Chapter 1: What Is JavaScript?

Table of Contents

Introduction 1.1
Get Started 1.2
Chapter 1: What Is JavaScript? 1.21
Chapter 2: Surveying JS 1.2.2
Chapter 3: Digging to the Roots of JS 123
Chapter 4: The Bigger Picture 1.24
Appendix A: Exploring Further 1.2.5
Appendix B: Practice, Practice, Practice! 1.2.6
Scope & Closures 1.3
Chapter 1: How Is Scope Determined? 1.3.1
Chapter 2: Understanding Lexical Scope 1.3.2
Chapter 3: Working With Scope 1.3.3
Chapter 4: Function vs. Block Scope 1.3.4
Chapter 5: Closures 1.3.5
Chapter 6: Module Pattern 1.3.6
Appendix A: Exploring Further 1.3.7
Appendix B: Practice 1.3.8
Objects & Classes 1.4
Chapter 1: this Or That? 1.4.1
Chapter 2: this All Makes Sense Now! 1.4.2
Chapter 3: Objects 143
Chapter 4: Mixing (Up) "Class" Objects 14.4
Chapter 5: Prototypes 145
Chapter 6: Behavior Delegation 146
Appendix A: ES6 class 14.7
Types & Grammar 15
Chapter 1: Types 1.5.1
Chapter 2: Values 15.2
Chapter 3: Natives 153
Chapter 4: Coercion 154
Chapter 5: Grammar 155
Appendix A: Mixed Environment JavaScript 1.5.6
Sync & Async 1.6
Chapter 1: Asynchrony: Now & Later 1.6.1

Chapter 2: Callbacks 1.6.2

Chapter 1: What Is JavaScript?

Chapter 3: Promises

Chapter 4: Generators

Chapter 5: Program Performance

Chapter 6: Benchmarking & Tuning

Appendix A: Library: asynquence

Appendix B: Advanced Async Patterns
ES.Next & Beyond

Chapter 1: ES? Now & Future

Chapter 2: Syntax

Chapter 3: Organization

Chapter 4: Async Flow Control

Chapter 5: Collections

Chapter 6: API Additions

Chapter 7: Meta Programming

Chapter 8: Beyond ES6

Appendix A: TODO

1.6.3
1.6.4
1.6.5
1.6.6
1.6.7
1.6.8

1.7
1.7.1
1.7.2
1.7.3
1.7.4
1.7.5
1.7.6
1.7.7
1.7.8
1.7.9

You Don't Know JS Yet (book series) -
2nd Edition

This is a series of books diving deep into the core mechanisms of the JavaScript
language.

To read more about the motivations and perspective behind this book
series, check out the Preface.

Premier Sponsor

This edition of the YDKJS book series is exclusively sponsored by Frontend
Masters.

Frontend Masters is the gold standard for top-of-the-line expert training material in
frontend-oriented software development. With over 150 courses on all things
frontend, this should be your first and only stop for quality video training on HTML,
CSS, JS, and related technologies.

| teach all my workshops exclusively through Frontend Masters. If you like this
book content, please check out my video training courses.

| want to extend a warm and deep thanks to Marc Grabanski and the entire
Frontend Masters team, not only for their excellent work with the video training
platform, but for their unwavering support of me and of the "You Don't Know JS"
books!

Titles

| recommend reading the books in this order:

e Get Started

e Scope & Closures
e Objects & Classes
e Types & Grammar
e Sync & Async

e ES.Next & Beyond

Publishing

As always, you'll be able to read these books online here entirely for free.

file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/preface.md
https://frontendmasters.com/
https://frontendmasters.com/kyle-simpson

This edition of the books is being self-published through GetiPub publishing. The
published books will be made available for sale through normal book retail
sources.

If you'd like to contribute financially towards the effort (or any of my other OSS
efforts) aside from purchasing the published books, please consider these
options:

e Github Sponsorship
e Patreon
e Paypal

Contributions

Please feel free to contribute to the quality of this content by submitting PRs for
improvements to code snippets, explanations, etc. While typo fixes are welcomed,
they will likely be caught through normal editing/publishing processes, so please
don't worry about them right now.

Any contributions you make to this effort are of course greatly appreciated.

But PLEASE read the Contributions Guidelines carefully before submitting a PR.

License & Copyright

The materials herein are all © 2019-2020 Kyle Simpson.

This work is licensed under a Creative Commons Attribution-NonCommercial-
NoDerivs 4.0 Unported License.

https://geti.pub/
https://github.com/users/getify/sponsorship
https://www.patreon.com/getify
https://www.paypal.me/getify
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/contributing.md
http://creativecommons.org/licenses/by-nc-nd/4.0/
http://creativecommons.org/licenses/by-nc-nd/4.0/

You Don't Know JS Yet: Get Started -
2nd Edition

SECOND EDITION

Yoo DoN'T KNow/
JS JfEr

GET STARTED

oo
e ~&

FrontendPMasters Kyle Simpson

Purchase ebook/PDF from Leanpub

Table of Contents

e Foreword (by Brian Holt)

e Preface

e Chapter 1: What Is JavaScript?

e Chapter 2: Surveying JS

e Chapter 3: Digging to the Roots of JS

e Chapter 4: The Bigger Picture

e Appendix A: Exploring Further

e Appendix B: Practice, Practice, Practice!

https://leanpub.com/ydkjsy-get-started
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/toc.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/foreword.md
https://twitter.com/holtbt
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/preface.md

You Don't Know JS Yet: Get Started -
2nd Edition

Chapter 1: What Is JavaScript?

You don't know JS, yet. Neither do |, not fully anyway. None of us do. But we can
all start getting to know JS better.

In this first chapter of the first book of the You Don't Know JS Yet (YDKJSY)
series, we will take some time to build a foundation to move forward on. We need
to start by covering a variety of important background housekeeping details,
clearing up some myths and misconceptions about what the language really is
(and isn't!).

This is valuable insight into the identity and process of how JS is organized and
maintained; all JS developers should understand it. If you want to get to know JS,
this is how to get started taking the first steps in that journey.

About This Book

| emphasize the word journey because knowing JS is not a destination, it's a
direction. No matter how much time you spend with the language, you will always
be able to find something else to learn and understand a little better. So don't look
at this book as something to rush through for a quick achievement. Instead,
patience and persistence are best as you take these first few steps.

Following this background chapter, the rest of the book lays out a high-level map
of what you will find as you dig into and study JS with the YDKJSY books.

In particular, Chapter 4 identifies three main pillars around which the JS language
is organized: scope/closures, prototypes/objects, and types/coercion. JS is a
broad and sophisticated language, with many features and capabilities. But all of
JS is founded on these three foundational pillars.

Keep in mind that even though this book is titled "Get Started," it's not intended
as a beginner/intro book. This book's main job is to get you ready for studying
JS deeply throughout the rest of the series; it's written assuming you already have
familiarity with JS over at least several months experience before moving on in
YDKJSY. So to get the most out Get Started, make sure you spend plenty of time
writing JS code to build up your experience.

Even if you've already written a lot of JS before, this book should not be skimmed
over or skipped; take your time to fully process the material here. A good start
always depends on a solid first step.

What's With That Name?

The name JavaScript is probably the most mistaken and misunderstood
programming language name.

Is this language related to Java? Is it only the script form for Java? Is it only for
writing scripts and not real programs?

The truth is, the name JavaScript is an artifact of marketing shenanigans. When
Brendan Eich first conceived of the language, he code-named it Mocha. Internally
at Netscape, the brand LiveScript was used. But when it came time to publicly
name the language, "JavaScript" won the vote.

Why? Because this language was originally designed to appeal to an audience of
mostly Java programmers, and because the word "script" was popular at the time
to refer to lightweight programs. These lightweight "scripts" would be the first ones
to embed inside of pages on this new thing called the web!

In other words, JavaScript was a marketing ploy to try to position this language as
a palatable alternative to writing the heavier and more well-known Java of the day.
It could just as easily have been called "WebJava," for that matter.

There are some superficial resemblances between JavaScript's code and Java
code. Those similarities don't particularly come from shared development, but
from both languages targeting developers with assumed syntax expectations from
C (and to an extent, C++).

For example, we use the { to begin a block of code and the } to end that block
of code, just like C/C++ and Java. We also use the ; to punctuate the end of a
statement.

In some ways, legal relationships run even deeper than the syntax. Oracle (via
Sun), the company that still owns and runs Java, also owns the official trademark
for the name "JavaScript" (via Netscape). This trademark is almost never
enforced, and likely couldn't be at this point.

For these reasons, some have suggested we use JS instead of JavaScript. That
is a very common shorthand, if not a good candidate for an official language
branding itself. Indeed, these books use JS almost exclusively to refer to the
language.

Further distancing the language from the Oracle-owned trademark, the official
name of the language specified by TC39 and formalized by the ECMA standards
body is ECMAScript. And indeed, since 2016, the official language name has
also been suffixed by the revision year; as of this writing, that's ECMAScript 2019,
or otherwise abbreviated ES2019.

In other words, the JavaScript/JS that runs in your browser or in Node.js, is an
implementation of the ES2019 standard.

NOTE:

Don't use terms like "JS6" or "ES8" to refer to the language. Some do, but
those terms only serve to perpetuate confusion. "ES20xx" or just "JS" are
what you should stick to.

Whether you call it JavaScript, JS, ECMAScript, or ES2019, it's most definitely not
a variant of the Java language!

"Java is to JavaScript as ham is to hamster." --Jeremy Keith, 2009

Language Specification

I mentioned TC39, the technical steering committee that manages JS. Their
primary task is managing the official specification for the language. They meet
regularly to vote on any agreed changes, which they then submit to ECMA, the
standards organization.

JS's syntax and behavior are defined in the ES specification.

ES2019 happens to be the 10th major numbered specification/revision since JS's
inception in 1995, so in the specification's official URL as hosted by ECMA, you'll
find "10.0™:

https://www.ecma-international.org/ecma-262/10.0/

The TC39 committee is comprised of between 50 and about 100 different people
from a broad section of web-invested companies, such as browser makers
(Mozilla, Google, Apple) and device makers (Samsung, etc). All members of the
committee are volunteers, though many of them are employees of these
companies and so may receive compensation in part for their duties on the
committee.

TC39 meets generally about every other month, usually for about three days, to
review work done by members since the last meeting, discuss issues, and vote on
proposals. Meeting locations rotate among member companies willing to host.

All TC39 proposals progress through a five-stage process—of course, since we're
programmers, it's 0-based!—Stage 0 through Stage 4. You can read more about
the Stage process here: https://tc39.es/process-document/

Stage 0 means roughly, someone on TC39 thinks it's a worthy idea and plans to
champion and work on it. That means lots of ideas that non-TC39 members
"propose," through informal means such as social media or blog posts, are really
"pre-stage 0." You have to get a TC39 member to champion a proposal for it to be
considered "Stage 0" officially.

Once a proposal reaches "Stage 4" status, it is eligible to be included in the next
yearly revision of the language. It can take anywhere from several months to a
few years for a proposal to work its way through these stages.

All proposals are managed in the open, on TC39's Github repository:
https://github.com/tc39/proposals

Anyone, whether on TC39 or not, is welcome to participate in these public
discussions and the processes for working on the proposals. However, only TC39
members can attend meetings and vote on the proposals and changes. So in
effect, the voice of a TC39 member carries a lot of weight in where JS will go.

https://www.ecma-international.org/ecma-262/10.0/
https://tc39.es/process-document/
https://github.com/tc39/proposals

Contrary to some established and frustratingly perpetuated myth, there are not
multiple versions of JavaScript in the wild. There's just one JS, the official
standard as maintained by TC39 and ECMA.

Back in the early 2000s, when Microsoft maintained a forked and reverse-
engineered (and not entirely compatible) version of JS called "JScript," there were
legitimately "multiple versions" of JS. But those days are long gone. It's outdated
and inaccurate to make such claims about JS today.

All major browsers and device makers have committed to keeping their JS
implementations compliant with this one central specification. Of course, engines
implement features at different times. But it should never be the case that the v8
engine (Chrome's JS engine) implements a specified feature differently or
incompatibly as compared to the SpiderMonkey engine (Mozilla's JS engine).

That means you can learn one JS, and rely on that same JS everywhere.

The Web Rules Everything About (JS)

While the array of environments that run JS is constantly expanding (from
browsers, to servers (Node.js), to robots, to lightbulbs, to...), the one environment
that rules JS is the web. In other words, how JS is implemented for web browsers
is, in all practicality, the only reality that matters.

For the most part, the JS defined in the specification and the JS that runs in
browser-based JS engines is the same. But there are some differences that must
be considered.

Sometimes the JS specification will dictate some new or refined behavior, and yet
that won't exactly match with how it works in browser-based JS engines. Such a
mismatch is historical: JS engines have had 20+ years of observable behaviors
around corner cases of features that have come to be relied on by web content.
As such, sometimes the JS engines will refuse to conform to a specification-
dictated change because it would break that web content.

In these cases, often TC39 will backtrack and simply choose to conform the
specification to the reality of the web. For example, TC39 planned to add a

contains(..) method for Arrays, but it was found that this name conflicted with
old JS frameworks still in use on some sites, so they changed the name to a non-
conflicting includes(..) . The same happened with a comedic/tragic JS
community crisis dubbed "smooshgate," where the planned flatten(..) method
was eventually renamed flat(..) .

But occasionally, TC39 will decide the specification should stick firm on some
point even though it is unlikely that browser-based JS engines will ever conform.

The solution? Appendix B, "Additional ECMAScript Features for Web
Browsers".SpeCApB The JS specification includes this appendix to detail out any
known mismatches between the official JS specification and the reality of JS on
the web. In other words, these are exceptions that are allowed only for web JS;

other JS environments must stick to the letter of the law.

Section B.1 and B.2 cover additions to JS (syntax and APIs) that web JS includes,
again for historical reasons, but which TC39 does not plan to formally specify in
the core of JS. Examples include o -prefixed octal literals, the global escape(..)

| unescape(..) utilities, String "helpers" like anchor(..) and blink() , and the
RegExp compile(..) method.

Section B.3 includes some conflicts where code may run in both web and non-
web JS engines, but where the behavior could be observably different, resulting in
different outcomes. Most of the listed changes involve situations that are labeled
as early errors when code is running in strict mode.

Appendix B gotchas aren't encountered very often, but it's still a good idea to
avoid these constructs to be future safe. Wherever possible, adhere to the JS
specification and don't rely on behavior that's only applicable in certain JS engine
environments.

Not All (Web) JS...

Is this code a JS program?

alert("Hello, JS!");

Depends on how you look at things. The atlert(..) function shown here is not
included in the JS specification, but it is in all web JS environments. Yet, you won't
find it in Appendix B, so what gives?

Various JS environments (like browser JS engines, Node.js, etc.) add APlIs into
the global scope of your JS programs that give you environment-specific
capabilities, like being able to pop an alert-style box in the user's browser.

In fact, a wide range of JS-looking APls, like fetch(..) ,
getCurrentLocation(..) , and getUserMedia(..) , are all web APlIs that look like
JS. In Node.js, we can access hundreds of APl methods from various built-in
modules, like fs.write(..) .

Another common example is console.log(..) (and all the other console.x
methods!). These are not specified in JS, but because of their universal utility are
defined by pretty much every JS environment, according to a roughly agreed
consensus.

So alert(..) and console.log(..) are notdefined by JS. But they look like JS.
They are functions and object methods and they obey JS syntax rules. The
behaviors behind them are controlled by the environment running the JS engine,
but on the surface they definitely have to abide by JS to be able to play in the JS
playground.

Most of the cross-browser differences people complain about with "JS is so
inconsistent!" claims are actually due to differences in how those environment
behaviors work, not in how the JS itself works.

Soan alert(..) callisJS, but alert itself is really just a guest, not part of the
official JS specification.

It's Not Always JS

Using the console/REPL (Read-Evaluate-Print-Loop) in your browser's Developer
Tools (or Node) feels like a pretty straightforward JS environment at first glance.
But it's not, really.

Developer Tools are... tools for developers. Their primary purpose is to make life
easier for developers. They prioritize DX (Developer Experience). It is not a goal
of such tools to accurately and purely reflect all nuances of strict-spec JS
behavior. As such, there's many quirks that may act as "gotchas" if you're treating
the console as a pure JS environment.

This convenience is a good thing, by the way! I'm glad Developer Tools make
developers' lives easier! I'm glad we have nice UX charms like auto-complete of
variables/properties, etc. I'm just pointing out that we can't and shouldn't expect
such tools to always adhere strictly to the way JS programs are handled, because
that's not the purpose of these tools.

Since such tools vary in behavior from browser to browser, and since they change
(sometimes rather frequently), I'm not going to "hardcode" any of the specific
details into this text, thereby ensuring this book text is outdated quickly.

But I'll just hint at some examples of quirks that have been true at various points
in different JS console environments, to reinforce my point about not assuming
native JS behavior while using them:

e Whethera var or function declaration in the top-level "global scope" of
the console actually creates a real global variable (and mirrored window
property, and vice versal).

e What happens with multiple 1et and const declarations in the top-level
"global scope."

e Whether "use strict"; on one line-entry (pressing <enter> after) enables
strict mode for the rest of that console session, the way it would on the first
line of a .js file, as well as whether you can use "use strict"; beyond the
"first line" and still get strict mode turned on for that session.

e How non-strict mode this default-binding works for function calls, and
whether the "global object" used will contain expected global variables.

e How hoisting (see Book 2, Scope & Closures) works across multiple line
entries.

¢ ...several others

The developer console is not trying to pretend to be a JS compiler that handles
your entered code exactly the same way the JS engine handles a .js file. It's trying
to make it easy for you to quickly enter a few lines of code and see the results
immediately. These are entirely different use cases, and as such, it's
unreasonable to expect one tool to handle both equally.

Don't trust what behavior you see in a developer console as representing exact
to-the-letter JS semantics; for that, read the specification. Instead, think of the
console as a "JS-friendly" environment. That's useful in its own right.

Many Faces

The term "paradigm” in programming language context refers to a broad (almost
universal) mindset and approach to structuring code. Within a paradigm, there are
myriad variations of style and form that distinguish programs, including countless
different libraries and frameworks that leave their unique signature on any given
code.

But no matter what a program's individual style may be, the big picture divisions
around paradigms are almost always evident at first glance of any program.

Typical paradigm-level code categories include procedural, object-oriented
(OO/classes), and functional (FP):

e Procedural style organizes code in a top-down, linear progression through a
pre-determined set of operations, usually collected together in related units
called procedures.

¢ OO style organizes code by collecting logic and data together into units
called classes.

o FP style organizes code into functions (pure computations as opposed to
procedures), and the adaptations of those functions as values.

Paradigms are neither right nor wrong. They're orientations that guide and mold
how programmers approach problems and solutions, how they structure and
maintain their code.

Some languages are heavily slanted toward one paradigm—C is procedural,
Java/C++ are almost entirely class oriented, and Haskell is FP through and
through.

But many languages also support code patterns that can come from, and even
mix and match from, different paradigms. So called "multi-paradigm languages"
offer ultimate flexibility. In some cases, a single program can even have two or
more expressions of these paradigms sitting side by side.

JavaScript is most definitely a multi-paradigm language. You can write procedural,
class-oriented, or FP-style code, and you can make those decisions on a line-by-
line basis instead of being forced into an all-or-nothing choice.

Backwards & Forwards

One of the most foundational principles that guides JavaScript is preservation of
backwards compatibility. Many are confused by the implications of this term, and
often confuse it with a related but different term: forwards compatibility.

Let's set the record straight.

Backwards compatibility means that once something is accepted as valid JS,
there will not be a future change to the language that causes that code to become
invalid JS. Code written in 1995—however primitive or limited it may have been!—

should still work today. As TC39 members often proclaim, "we don't break the
web!"

The idea is that JS developers can write code with confidence that their code
won't stop working unpredictably because a browser update is released. This
makes the decision to choose JS for a program a more wise and safe investment,
for years into the future.

That "guarantee" is no small thing. Maintaining backwards compatibility, stretched
out across almost 25 years of the language's history, creates an enormous burden
and a whole slew of unique challenges. You'd be hard pressed to find many other
examples in computing of such a commitment to backwards compatibility.

The costs of sticking to this principle should not be casually dismissed. It
necessarily creates a very high bar to including changing or extending the
language; any decision becomes effectively permanent, mistakes and all. Once
it's in JS, it can't be taken out because it might break programs, even if we'd
really, really like to remove it!

There are some small exceptions to this rule. JS has had some backwards-
incompatible changes, but TC39 is extremely cautious in doing so. They study
existing code on the web (via browser data gathering) to estimate the impact of
such breakage, and browsers ultimately decide and vote on whether they're
willing to take the heat from users for a very small-scale breakage weighed
against the benefits of fixing or improving some aspect of the language for many
more sites (and users).

These kinds of changes are rare, and are almost always in corner cases of usage
that are unlikely to be observably breaking in many sites.

Compare backwards compatibility to its counterpart, forwards compatibility. Being
forwards-compatible means that including a new addition to the language in a
program would not cause that program to break if it were run in an older JS
engine. JS is not forwards-compatible, despite many wishing such, and even
incorrectly believing the myth that it is.

HTML and CSS, by contrast, are forwards-compatible but not backwards-
compatible. If you dug up some HTML or CSS written back in 1995, it's entirely
possible it would not work (or work the same) today. But, if you use a new feature
from 2019 in a browser from 2010, the page isn't "broken" -- the unrecognized
CSS/HTML is skipped over, while the rest of the CSS/HTML would be processed
accordingly.

It may seem desirable for forwards-compatibility to be included in programming
language design, but it's generally impractical to do so. Markup (HTML) or styling
(CSS) are declarative in nature, so it's much easier to "skip over" unrecognized
declarations with minimal impact to other recognized declarations.

But chaos and non-determinism would ensue if a programming language engine
selectively skipped statements (or even expressions!) that it didn't understand, as
it's impossible to ensure that a subsequent part of the program wasn't expecting
the skipped-over part to have been processed.

Though JS isn't, and can't be, forwards-compatible, it's critical to recognize JS's
backwards compatibility, including the enduring benefits to the web and the
constraints and difficulties it places on JS as a result.

Jumping the Gaps

Since JS is not forwards-compatible, it means that there is always the potential for
a gap between code that you can write that's valid JS, and the oldest engine that
your site or application needs to support. If you run a program that uses an
ES2019 feature in an engine from 2016, you're very likely to see the program
break and crash.

If the feature is a new syntax, the program will in general completely fail to
compile and run, usually throwing a syntax error. If the feature is an API (such as
ES6's object.is(..)), the program may run up to a point but then throw a
runtime exception and stop once it encounters the reference to the unknown API.

Does this mean JS developers should always lag behind the pace of progress,
using only code that is on the trailing edge of the oldest JS engine environments
they need to support? No!

But it does mean that JS developers need to take special care to address this
gap.

For new and incompatible syntax, the solution is transpiling. Transpiling is a
contrived and community-invented term to describe using a tool to convert the
source code of a program from one form to another (but still as textual source
code). Typically, forwards-compatibility problems related to syntax are solved by
using a transpiler (the most common one being Babel (https://babeljs.io)) to
convert from that newer JS syntax version to an equivalent older syntax.

For example, a developer may write a snippet of code like:

if (something) {

let x = 3;
.log(x);
+
else {
let x = 4;
.log(x);
+

This is how the code would look in the source code tree for that application. But
when producing the file(s) to deploy to the public website, the Babel transpiler
might convert that code to look like this:

var x$0, x$1;
if (something) {

x$0 = 3;
. log(x$0);
+
else {
x$1 = 4;
.log(x$1);

https://babeljs.io/

The original snippet relied on 1let to create block-scoped x variables in both
the if and else clauses which did not interfere with each other. An equivalent
program (with minimal re-working) that Babel can produce just chooses to name
two different variables with unique names, producing the same non-interference
outcome.

NOTE:

The 1let keyword was added in ES6 (in 2015). The preceding example of
transpiling would only need to apply if an application needed to run in a pre-
ES6 supporting JS environment. The example here is just for simplicity of
illustration. When ES6 was new, the need for such a transpilation was quite
prevalent, but in 2020 it's much less common to need to support pre-ES6
environments. The "target" used for transpiliation is thus a sliding window
that shifts upward only as decisions are made for a site/application to stop
supporting some old browser/engine.

You may wonder: why go to the trouble of using a tool to convert from a newer
syntax version to an older one? Couldn't we just write the two variables and skip
using the 1et keyword? The reason is, it's strongly recommended that
developers use the latest version of JS so that their code is clean and
communicates its ideas most effectively.

Developers should focus on writing the clean, new syntax forms, and let the tools
take care of producing a forwards-compatible version of that code that is suitable
to deploy and run on the oldest-supported JS engine environments.

Filling the Gaps

If the forwards-compatibility issue is not related to new syntax, but rather to a
missing APl method that was only recently added, the most common solution is to
provide a definition for that missing API method that stands in and acts as if the
older environment had already had it natively defined. This pattern is called a
polyfill (aka "shim").

Consider this code:

var pr = getSomeRecords();

startSpinner();

pr
.then(renderRecords)
.catch(showError)
.finally(hideSpinner)

This code uses an ES2019 feature, the finally(..) method on the promise
prototype. If this code were used in a pre-ES2019 environment, the finally(..)
method would not exist, and an error would occur.

A polyfill for finally(..) in pre-ES2019 environments could look like this:

if (! .prototype.finally) {
.prototype.finally = function f(fn){
return this.then(
function t(v){

return .resolve(fn())
.then(function t(){
return v;
1)
},
function c(e){
return .resolve(fn())
.then(function t(){
throw e;
1)
}
);
b3
+
WARNING:

This is only a simple illustration of a basic (not entirely spec-compliant)
polyfill for finally(..) . Don't use this polyfill in your code; always use a
robust, official polyfill wherever possible, such as the collection of
polyfills/shims in ES-Shim.

The if statement protects the polyfill definition by preventing it from running in
any environment where the JS engine has already defined that method. In older
environments, the polyfill is defined, but in newer environments the if statement
is quietly skipped.

Transpilers like Babel typically detect which polyfills your code needs and provide
them automatically for you. But occasionally you may need to include/define them
explicitly, which works similar to the snippet we just looked at.

Always write code using the most appropriate features to communicate its ideas
and intent effectively. In general, this means using the most recent stable JS
version. Avoid negatively impacting the code's readability by trying to manually
adjust for the syntax/API gaps. That's what tools are for!

Transpilation and polyfilling are two highly effective techniques for addressing that
gap between code that uses the latest stable features in the language and the old
environments a site or application needs to still support. Since JS isn't going to
stop improving, the gap will never go away. Both techniques should be embraced
as a standard part of every JS project's production chain going forward.

What's in an Interpretation?

A long-debated question for code written in JS: is it an interpreted script or a
compiled program? The majority opinion seems to be that JS is an interpreted
(scripting) language. But the truth is more complicated than that.

For much of the history of programming languages, "interpreted" languages and
"scripting" languages have been looked down on as inferior compared to their
compiled counterparts. The reasons for this acrimony are numerous, including the

perception that there is a lack of performance optimization, as well as dislike of
certain language characteristics, such as scripting languages generally using
dynamic typing instead of the "more mature" statically typed languages.

Languages regarded as "compiled" usually produce a portable (binary)
representation of the program that is distributed for execution later. Since we don't
really observe that kind of model with JS (we distribute the source code, not the
binary form), many claim that disqualifies JS from the category. In reality, the

distribution model for a program's "executable" form has become drastically more
varied and also less relevant over the last few decades; to the question at hand, it
doesn't really matter so much anymore what form of a program gets passed

around.

These misinformed claims and criticisms should be set aside. The real reason it
matters to have a clear picture on whether JS is interpreted or compiled relates to
the nature of how errors are handled.

Historically, scripted or interpreted languages were executed in generally a top-
down and line-by-line fashion; there's typically not an initial pass through the
program to process it before execution begins (see Figure 1).

< & ¥
1 1

—> ¥

|
\
2
|
|
%

—

Fig. 1: Interpreted/Scripted Execution

In scripted or interpreted languages, an error on line 5 of a program won't be
discovered until lines 1 through 4 have already executed. Notably, the error on
line 5 might be due to a runtime condition, such as some variable or value having
an unsuitable value for an operation, or it may be due to a malformed
statement/command on that line. Depending on context, deferring error handling
to the line the error occurs on may be a desirable or undesirable effect.

Compare that to languages which do go through a processing step (typically,
called parsing) before any execution occurs, as illustrated in Figure 2:

0100110101001010
11600010101011101

0111010101010110

1001101010101000

Tt - QP

» » 10101011160000011 »
1001010101011001

0000100100001010

1001010101010101

Fig. 2: Parsing + Compilation + Execution

In this processing model, an invalid command (such as broken syntax) on line 5
would be caught during the parsing phase, before any execution has begun, and
none of the program would run. For catching syntax (or otherwise "static") errors,
generally it's preferred to know about them ahead of any doomed partial
execution.

So what do "parsed" languages have in common with "compiled" languages?
First, all compiled languages are parsed. So a parsed language is quite a ways
down the road toward being compiled already. In classic compilation theory, the
last remaining step after parsing is code generation: producing an executable
form.

Once any source program has been fully parsed, it's very common that its
subsequent execution will, in some form or fashion, include a translation from the
parsed form of the program—usually called an Abstract Syntax Tree (AST)—to
that executable form.

In other words, parsed languages usually also perform code generation before
execution, so it's not that much of a stretch to say that, in spirit, they're compiled
languages.

JS source code is parsed before it is executed. The specification requires as
much, because it calls for "early errors"—statically determined errors in code,
such as a duplicate parameter name—to be reported before the code starts
executing. Those errors cannot be recognized without the code having been
parsed.

So JS is a parsed language, but is it compiled?

The answer is closer to yes than no. The parsed JS is converted to an optimized
(binary) form, and that "code" is subsequently executed (Figure 2); the engine
does not commonly switch back into line-by-line execution (like Figure 1) mode
after it has finished all the hard work of parsing—most languages/engines
wouldn't, because that would be highly inefficient.

To be specific, this "compilation" produces a binary byte code (of sorts), which is
then handed to the "JS virtual machine" to execute. Some like to say this VM is
"interpreting” the byte code. But then that means Java, and a dozen other JVM-
driven languages, for that matter, are interpreted rather than compiled. Of course,
that contradicts the typical assertion that Java/etc are compiled languages.

Interestingly, while Java and JavaScript are very different languages, the question
of interpreted/compiled is pretty closely related between them!

Another wrinkle is that JS engines can employ multiple passes of JIT (Just-In-
Time) processing/optimization on the generated code (post parsing), which again
could reasonably be labeled either "compilation” or "interpretation" depending on
perspective. It's actually a fantastically complex situation under the hood of a JS
engine.

So what do these nitty-gritty details boil down to? Step back and consider the
entire flow of a JS source program:

1. After a program leaves a developer's editor, it gets transpiled by Babel, then
packed by Webpack (and perhaps half a dozen other build processes), then it
gets delivered in that very different form to a JS engine.

2. The JS engine parses the code to an AST.

3. Then the engine converts that AST to a kind-of byte code, a binary
intermediate representation (IR), which is then refined/converted even further
by the optimizing JIT compiler.

4. Finally, the JS VM executes the program.

To visualize thoses steps, again:

110101001010
010101011101
1010101010110

1001101010101000
0161010100001110
—» —» 1016101110000011 —»

1091010101011001

9000180100001018

1001910101616161

Fig. 3: Parsing, Compiling, and Executing JS

Is JS handled more like an interpreted, line-by-line script, as in Figure 1, oris it
handled more like a compiled language that's processed in one-to-several passes
first, before execution (as in Figures 2 and 3)?

| think it's clear that in spirit, if not in practice, JS is a compiled language.

And again, the reason that matters is, since JS is compiled, we are informed of
static errors (such as malformed syntax) before our code is executed. That is a
substantively different interaction model than we get with traditional "scripting"
programs, and arguably more helpful!

Web Assembly (WASM)

One dominating concern that has driven a significant amount of JS's evolution is
performance, both how quickly JS can be parsed/compiled and how quickly that
compiled code can be executed.

In 2013, engineers from Mozilla Firefox demonstrated a port of the Unreal 3 game
engine from C to JS. The ability for this code to run in a browser JS engine at full
60fps performance was predicated on a set of optimizations that the JS engine
could perform specifically because the JS version of the Unreal engine's code
used a style of code that favored a subset of the JS language, named "ASM.js".

This subset is valid JS written in ways that are somewhat uncommon in normal
coding, but which signal certain important typing information to the engine that
allow it to make key optimizations. ASM.js was introduced as one way of
addressing the pressures on the runtime performance of JS.

But it's important to note that ASM.js was never intended to be code that was
authored by developers, but rather a representation of a program having been
transpiled from another language (such as C), where these typing "annotations"

were inserted automatically by the tooling.

Several years after ASM.js demonstrated the validity of tooling-created versions
of programs that can be processed more efficiently by the JS engine, another
group of engineers (also, initially, from Mozilla) released Web Assembly (WASM).

WASM is similar to ASM.js in that its original intent was to provide a path for non-
JS programs (C, etc.) to be converted to a form that could run in the JS engine.
Unlike ASM.js, WASM chose to additionally get around some of the inherent
delays in JS parsing/compilation before a program can execute, by representing
the program in a form that is entirely unlike JS.

WASM is a representation format more akin to Assembly (hence, its name) that
can be processed by a JS engine by skipping the parsing/compilation that the JS
engine normally does. The parsing/compilation of a WASM-targeted program
happen ahead of time (AOT); what's distributed is a binary-packed program ready
for the JS engine to execute with very minimal processing.

An initial motivation for WASM was clearly the potential performance
improvements. While that continues to be a focus, WASM is additionally
motivated by the desire to bring more parity for non-JS languages to the web
platform. For example, if a language like Go supports threaded programming, but
JS (the language) does not, WASM offers the potential for such a Go program to
be converted to a form the JS engine can understand, without needing a threads
feature in the JS language itself.

In other words, WASM relieves the pressure to add features to JS that are
mostly/exclusively intended to be used by transpiled programs from other
languages. That means JS feature development can be judged (by TC39) without
being skewed by interests/demands in other language ecosystems, while still
letting those languages have a viable path onto the web.

Another perspective on WASM that's emerging is, interestingly, not even directly
related to the web (W). WASM is evolving to become a cross-platform virtual
machine (VM) of sorts, where programs can be compiled once and run in a
variety of different system environments.

So, WASM isn't only for the web, and WASM also isn't JS. Ironically, even though
WASM runs in the JS engine, the JS language is one of the least suitable
languages to source WASM programs with, because WASM relies heavily on
static typing information. Even TypeScript (TS)—ostensibly, JS + static types—is
not quite suitable (as it stands) to transpile to WASM, though language variants
like AssemblyScript are attempting to bridge the gap between JS/TS and WASM.

This book isn't about WASM, so | won't spend much more time discussing it,
except to make one final point. Some folks have suggested WASM points to a
future where JS is excised from, or minimized in, the web. These folks often
harbor ill feelings about JS, and want some other language—any other language!
—to replace it. Since WASM lets other languages run in the JS engine, on its face
this isn't an entirely fanciful fairytale.

But let me just state simply: WASM will not replace JS. WASM significantly
augments what the web (including JS) can accomplish. That's a great thing,
entirely orthogonal to whether some people will use it as an escape hatch from
having to write JS.

Strictly Speaking

Back in 2009 with the release of ES5, JS added strict mode as an opt-in
mechanism for encouraging better JS programs.

The benefits of strict mode far outweigh the costs, but old habits die hard and the

inertia of existing (aka "legacy") code bases is really hard to shift. So sadly, more

than 10 years later, strict mode's optionality means that it's still not necessarily the
default for JS programmers.

Why strict mode? Strict mode shouldn't be thought of as a restriction on what you
can't do, but rather as a guide to the best way to do things so that the JS engine
has the best chance of optimizing and efficiently running the code. Most JS code
is worked on by teams of developers, so the strict-ness of strict mode (along with
tooling like linters!) often helps collaboration on code by avoiding some of the
more problematic mistakes that slip by in non-strict mode.

Most strict mode controls are in the form of early errors, meaning errors that aren't
strictly syntax errors but are still thrown at compile time (before the code is run).
For example, strict mode disallows naming two function parameters the same,
and results in an early error. Some other strict mode controls are only observable
at runtime, such as how this defaults to undefined instead of the global object.

Rather than fighting and arguing with strict mode, like a kid who just wants to defy
whatever their parents tell them not to do, the best mindset is that strict mode is
like a linter reminding you how JS should be written to have the highest quality
and best chance at performance. If you find yourself feeling handcuffed, trying to
work around strict mode, that should be a blaring red warning flag that you need
to back up and rethink the whole approach.

Strict mode is switched on per file with a special pragma (nothing allowed before it
except comments/whitespace):

WARNING:

Something to be aware of is that even a stray ; all by itself appearing
before the strict mode pragma will render the pragma useless; no errors are
thrown because it's valid JS to have a string literal expression in a statement
position, but it also will silently not turn on strict mode!

Strict mode can alternatively be turned on per-function scope, with exactly the
same rules about its surroundings:

function someOperations() {

Interestingly, if a file has strict mode turned on, the function-level strict mode
pragmas are disallowed. So you have to pick one or the other.

The only valid reason to use a per-function approach to strict mode is when you
are converting an existing non-strict mode program file and need to make the
changes little by little over time. Otherwise, it's vastly better to simply turn strict
mode on for the entire file/program.

Many have wondered if there would ever be a time when JS made strict mode the
default? The answer is, almost certainly not. As we discussed earlier around
backwards compatibility, if a JS engine update started assuming code was strict
mode even if it's not marked as such, it's possible that this code would break as a
result of strict mode's controls.

However, there are a few factors that reduce the future impact of this non-default
"obscurity" of strict mode.

For one, virtually all transpiled code ends up in strict mode even if the original
source code isn't written as such. Most JS code in production has been
transpiled, so that means most JS is already adhering to strict mode. It's possible
to undo that assumption, but you really have to go out of your way to do so, so it's
highly unlikely.

Moreover, a wide shift is happening toward more/most new JS code being written
using the ES6 module format. ES6 modules assume strict mode, so all code in
such files is automatically defaulted to strict mode.

Taken together, strict mode is largely the de facto default even though technically
it's not actually the default.

Defined

JS is an implementation of the ECMAScript standard (version ES2019 as of this
writing), which is guided by the TC39 committee and hosted by ECMA. It runs in
browsers and other JS environments such as Node.js.

JS is a multi-paradigm language, meaning the syntax and capabilities allow a
developer to mix and match (and bend and reshape!) concepts from various
major paradigms, such as procedural, object-oriented (OO/classes), and
functional (FP).

JS is a compiled language, meaning the tools (including the JS engine) process
and verify a program (reporting any errors!) before it executes.

With our language now defined, let's start getting to know its ins and outs.

Chapter 1: What Is JavaScript?
SPECAPE. ECMAScript 2019 Language Specification, Appendix B:
Additional ECMAScript Features for Web Browsers, https://www.ecma-
international.org/ecma-262/10.0/#sec-additional-ecmascript-features-for-
web-browsers (latest as of time of this writing in January 2020) <

23

https://www.ecma-international.org/ecma-262/10.0/#sec-additional-ecmascript-features-for-web-browsers

You Don't Know JS Yet: Get Started -
2nd Edition

Chapter 2: Surveying JS

The best way to learn JS is to start writing JS.

To do that, you need to know how the language works, and that's what we'll focus
on here. Even if you've programmed in other languages before, take your time
getting comfortable with JS, and make sure to practice each piece.

This chapter is not an exhaustive reference on every bit of syntax of the JS
language. It's also not intended to be a complete "intro to JS" primer.

Instead, we're just going to survey some of the major topic areas of the language.
Our goal is to get a better feel for it, so that we can move forward writing our own
programs with more confidence. We'll revisit many of these topics in successively
more detail as you go through the rest of this book, and the rest of the series.

Please don't expect this chapter to be a quick read. It's long and there's plenty of
detail to chew on. Take your time.

TIP:

If you're still getting familiar with JS, | suggest you reserve plenty of extra
time to work through this chapter. Take each section and ponder and explore
the topic for awhile. Look through existing JS programs and compare what
you see in them to the code and explanations (and opinions!) presented
here. You will get a lot more out of the rest of the book and series with a
solid foundation of JS's nature.

Each File is a Program

Almost every website (web application) you use is comprised of many different JS
files (typically with the .js file extension). It's tempting to think of the whole thing
(the application) as one program. But JS sees it differently.

In JS, each standalone file is its own separate program.

The reason this matters is primarily around error handling. Since JS treats files as
programs, one file may fail (during parse/compile or execution) and that will not
necessarily prevent the next file from being processed. Obviously, if your
application depends on five .js files, and one of them fails, the overall application
will probably only partially operate, at best. It's important to ensure that each file
works properly, and that to whatever extent possible, they handle failure in other
files as gracefully as possible.

It may surprise you to consider separate .js files as separate JS programs. From
the perspective of your usage of an application, it sure seems like one big
program. That's because the execution of the application allows these individual

programs to cooperate and act as one program.

NOTE:

Many projects use build process tools that end up combining separate files
from the project into a single file to be delivered to a web page. When this
happens, JS treats this single combined file as the entire program.

The only way multiple standalone .js files act as a single program is by sharing
their state (and access to their public functionality) via the "global scope." They
mix together in this global scope namespace, so at runtime they act as as whole.

Since ES6, JS has also supported a module format in addition to the typical
standalone JS program format. Modules are also file-based. If a file is loaded via
module-loading mechanism such as an import statementora <script
type=module> tag, all its code is treated as a single module.

Though you wouldn't typically think about a module—a collection of state and
publicly exposed methods to operate on that state—as a standalone program, JS
does in fact still treat each module separately. Similar to how "global scope"
allows standalone files to mix together at runtime, importing a module into another
allows runtime interoperation between them.

Regardless of which code organization pattern (and loading mechanism) is used
for a file (standalone or module), you should still think of each file as its own (mini)
program, which may then cooperate with other (mini) programs to perform the
functions of your overall application.

Values

The most fundamental unit of information in a program is a value. Values are
data. They're how the program maintains state. Values come in two forms in JS:
primitive and object.

Values are embedded in programs using literals:

greeting("My name is Kyle.");

In this program, the value "My name is Kyle." is a primitive string literal; strings
are ordered collections of characters, usually used to represent words and
sentences.

| used the double-quote " character to delimit (surround, separate, define) the
string value. But | could have used the single-quote ' character as well. The
choice of which quote character is entirely stylistic. The important thing, for code
readability and maintainability sake, is to pick one and to use it consistently
throughout the program.

Another option to delimit a string literal is to use the back-tick * character.
However, this choice is not merely stylistic; there's a behavioral difference as well.
Consider:

.log("My name is ${ firstName }.");

.log('My name is ${ firstName }.');

.log("My name is ${ firstName }.");

Assuming this program has already defined a variable firstName with the string
value "kyle" ,the ° -delimited string then resolves the variable expression
(indicated with ${ .. }) toits current value. This is called interpolation.

The back-tick * -delimited string can be used without including interpolated
expressions, but that defeats the whole purpose of that alternate string literal
syntax:

. log(
"Am I confusing you by omitting interpolation?’
);

The better approach istouse " or ' (again, pick one and stick to it!) for strings
unless you need interpolation; reserve * only for strings that will include
interpolated expressions.

Other than strings, JS programs often contain other primitive literal values such as
booleans and numbers:

while () {
. log(Dk
}

while represents a loop type, a way to repeat operations while its condition is
true.

In this case, the loop will never run (and nothing will be printed), because we used
the false boolean value as the loop conditional. true would have resulted in a
loop that keeps going forever, so be careful!

The number 3.141592 is, as you may know, an approximation of mathematical PI
to the first six digits. Rather than embed such a value, however, you would
typically use the predefined math.PI value for that purpose. Another variation on
numbers is the bigint (big-integer) primitive type, which is used for storing
arbitrarily large numbers.

Numbers are most often used in programs for counting steps, such as loop
iterations, and accessing information in numeric positions (i.e., an array index).
We'll cover arrays/objects in a little bit, but as an example, if there was an array
called names , we could access the element in its second position like this:

.log("My name is ${ names[1] }.');

We used 1 for the element in the second position, instead of 2 , because like in
most programming languages, JS array indices are 0-based (o is the first
position).

In addition to strings, numbers, and booleans, two other primitive values in JS
programs are null and undefined . While there are differences between them
(some historic and some contemporary), for the most part both values serve the
purpose of indicating emptiness (or absence) of a value.

Many developers prefer to treat them both consistently in this fashion, which is to
say that the values are assumed to be indistinguishable. If care is taken, this is
often possible. However, it's safest and best to use only undefined as the single
empty value, even though null seems attractive in that it's shorter to type!

while (value !=) {
.log("Still got something!");
H

The final primitive value to be aware of is a symbol, which is a special-purpose
value that behaves as a hidden unguessable value. Symbols are almost
exclusively used as special keys on objects:

hitchhikersGuide [("meaning of life") 1;

You won't encounter direct usage of symbols very often in typical JS programs.
They're mostly used in low-level code such as in libraries and frameworks.

Arrays And Objects

Besides primitives, the other value type in JS is an object value.

As mentioned earlier, arrays are a special type of object that's comprised of an
ordered and numerically indexed list of data:

var names = ["Frank", "Kyle", "Peter", "Susan" 1;

names. length;
names [0];

names[1];

JS arrays can hold any value type, either primitive or object (including other
arrays). As we'll see toward the end of Chapter 3, even functions are values that
can be held in arrays or objects.

NOTE:

Functions, like arrays, are a special kind (aka, sub-type) of object. We'll
cover functions in more detail in a bit.

Objects are more general: an unordered, keyed collection of any various values.
In other words, you access the element by a string location name (aka "key" or
"property") rather than by its numeric position (as with arrays). For example:

var me = {
first: "Kyle",
last: "Simpson",
age: ,
specialties: ["JS", "Table Tennis"]

.log("My name is ${ me.first }.");

Here, me represents an object, and first represents the name of a location of
information in that object (value collection). Another syntax option that accesses
information in an object by its property/key uses the square-brackets [1, such
as me["first"] .

Value Type Determination

For distinguishing values, the typeof operator tells you its built-in type, if
primitive, or "object" otherwise:

typeof B

typeof "abc";
typeof B
typeof H
typeof B

typeof { "a": 1 };
typeof [1,2,3];
typeof function hello(){};

WARNING:

typeof null unfortunately returns "object" instead of the expected
"null" . Also, typeof returns the specific "function" for functions, but
not the expected "array" for arrays.

Converting from one value type to another, such as from string to number, is
referred to in JS as "coercion." We'll cover this in more detail later in this chapter.

Primitive values and object values behave differently when they're assigned or
passed around. We'll cover these details in Appendix A, "Values vs References."

Declaring and Using Variables

To be explicit about something that may not have been obvious in the previous
section: in JS programs, values can either appear as literal values (as many of the
preceding examples illustrate), or they can be held in variables; think of variables
as just containers for values.

Variables have to be declared (created) to be used. There are various syntax
forms that declare variables (aka, "identifiers"), and each form has different
implied behaviors.

For example, consider the var statement:

var myName = "Kyle";
var age;

The var keyword declares a variable to be used in that part of the program, and
optionally allows an initial assignment of a value.

Another similar keyword is let :

let myName = "Kyle";
let age;

The 1let keyword has some differences to var , with the most obvious being
that tlet allows a more limited access to the variable than var . This is called
"block scoping" as opposed to regular or function scoping.

Consider:

var adult = ;

if (adult) {
var myName = "Kyle";
let age = B
.log("Shhh, this is a secret!");

. log(myName) ;

.log(age);

The attempt to access age outside of the if statement results in an error,
because age was block-scoped to the if , whereas myName was not.

Block-scoping is very useful for limiting how widespread variable declarations are
in our programs, which helps prevent accidental overlap of their names.

But var is still useful in that it communicates "this variable will be seen by a
wider scope (of the whole function)". Both declaration forms can be appropriate in
any given part of a program, depending on the circumstances.

NOTE:

It's very common to suggest that var should be avoided in favor of 1et

(or const !), generally because of perceived confusion over how the
scoping behavior of var has worked since the beginning of JS. | believe
this to be overly restrictive advice and ultimately unhelpful. It's assuming you
are unable to learn and use a feature properly in combination with other
features. | believe you can and should learn any features available, and use
them where appropriate!

A third declaration form is const . It's like 1let but has an additional limitation
that it must be given a value at the moment it's declared, and cannot be re-
assigned a different value later.

Consider:

const myBirthday = g
let age = 5

if (myBirthday) {
age = age + 1;
myBirthday = 3

The myBirthday constantis not allowed to be re-assigned.

const declared variables are not "unchangeable”, they just cannot be re-
assigned. It's ill-advised to use const with object values, because those values
can still be changed even though the variable can't be re-assigned. This leads to
potential confusion down the line, so | think it's wise to avoid situations like:

const actors = [

"Morgan Freeman", "Jennifer Aniston"
I;
actors[2] = "Tom Cruise";
actors = [];

The best semantic use of a const is when you have a simple primitive value that
you want to give a useful name to, such as using myBirthday instead of true .
This makes programs easier to read.

TIP:

If you stick to using const only with primitive values, you avoid any
confusion of re-assignment (not allowed) vs. mutation (allowed)! That's the
safest and best way to use const .

Besides var / let / const , there are other syntactic forms that declare
identifiers (variables) in various scopes. For example:

function hello() {
.log(Hello, ${ myName }.');
+

hello("Kyle");

The identifier hello is created in the outer scope, and it's also automatically
associated so that it references the function. But the named parameter mynName is
created only inside the function, and thus is only accessible inside that function's
scope. hello and myName generally behave as var -declared.

Another syntax that declares a variable is a catch clause:

try {

someError();
+
catch (err) {
.log(err)
+

The err is a block-scoped variable that exists only inside the catch clause, as
if it had been declared with 1et .

Functions

The word "function" has a variety of meanings in programming. For example, in
the world of Functional Programming, "function” has a precise mathematical
definition and implies a strict set of rules to abide by.

In JS, we should consider "function" to take the broader meaning of another
related term: "procedure." A procedure is a collection of statements that can be
invoked one or more times, may be provided some inputs, and may give back one
or more outputs.

From the early days of JS, function definition looked like:

function awesomeFunction() {

return amazingStuff;

This is called a function declaration because it appears as a statement by itself,
not as an expression in another statement. The association between the identifier

awesomeFunction and the function value happens during the compile phase of the
code, before that code is executed.

In contrast to a function declaration statement, a function expression can be
defined and assigned like this:

var awesomeFunction = function() {

return amazingStuff;

4

This function is an expression that is assigned to the variable awesomeFunction .
Different from the function declaration form, a function expression is not
associated with its identifier until that statement during runtime.

It's extremely important to note that in JS, functions are values that can be
assigned (as shown in this snippet) and passed around. In fact, JS functions are a
special type of the object value type. Not all languages treat functions as values,
but it's essential for a language to support the functional programming pattern, as
JS does.

JS functions can receive parameter input:

function greeting() {
.log(Hello, ${ myName }!');
+

greeting("Kyle");

In this snippet, myName is called a parameter, which acts as a local variable inside
the function. Functions can be defined to receive any number of parameters, from
none upward, as you see fit. Each parameter is assigned the argument value that
you pass in that position ("kyle" , here) of the call.

Functions also can return values using the return keyword:

function greeting() {
return ‘Hello, ${ myName }!;
+

var msg = greeting("Kyle");

. log(msg);

You can only return a single value, but if you have more values to return, you
can wrap them up into a single object/array.

Since functions are values, they can be assigned as properties on objects:

var whatToSay = {
greeting() {
. log("Hello!");
Yo
question() {
. log("What's your name?");
+
answer() {
. log("My name is Kyle.");
+
b

whatToSay.greeting();

In this snippet, references to three functions (greeting() , question() , and
answer()) are included in the object held by whatToSay . Each function can be
called by accessing the property to retrieve the function reference value. Compare
this straightforward style of defining functions on an object to the more
sophisticated class syntax discussed later in this chapter.

There are many varied forms that function s take in JS. We dig into these
variations in Appendix A, "So Many Function Forms."

Comparisons

Making decisions in programs requires comparing values to determine their
identity and relationship to each other. JS has several mechanisms to enable
value comparison, so let's take a closer look at them.

Equal...ish

The most common comparison in JS programs asks the question, "Is this X value
the same as that Y value?" What exactly does "the same as" really mean to JS,
though?

For ergonomic and historical reasons, the meaning is more complicated than the
obvious exact identity sort of matching. Sometimes an equality comparison
intends exact matching, but other times the desired comparison is a bit broader,
allowing closely similar or interchangeable matching. In other words, we must be
aware of the nuanced differences between an equality comparison and an
equivalence comparison.

If you've spent any time working with and reading about JS, you've certainly seen
the so-called "triple-equals" === operator, also described as the "strict equality"
operator. That seems rather straightforward, right? Surely, "strict" means strict, as
in narrow and exact.

Not exactly.

Yes, most values participating in an === equality comparison will fit with that
exact same intuition. Consider some examples:

yes" === "yes";

=== "42";
"hello" === "Hello";
NOTE:
Another way ==="s equality comparison is often described is, "checking
both the value and the type". In several of the examples we've looked at so
far, like 42 === "42" | the type of both values (number, string, etc.) does

seem to be the distinguishing factor. There's more to it than that, though. All
value comparisons in JS consider the type of the values being compared,
not just the === operator. Specifically, === disallows any sort of type
conversion (aka, "coercion") in its comparison, where other JS comparisons
do allow coercion.

But the === operator does have some nuance to it, a fact many JS developers
gloss over, to their detriment. The === operator is designed to lie in two cases of
special values: NaN and -o . Consider:

In the case of NaN , the === operator lies and says that an occurrence of NaN is
not equal to another Nan . In the case of -@ (yes, this is a real, distinct value
you can use intentionally in your programs!), the === operator lies and says it's
equal to the regular o value.

Since the lying about such comparisons can be bothersome, it's best to avoid
using === for them. For NaN comparisons, use the Number.isNaN(..) utility,
which does not lie. For -¢ comparison, use the object.is(..) utility, which also
does not lie. Object.is(..) can also be used for non-lying Nan checks, if you

prefer. Humorously, you could think of object.is(..) as the "quadruple-equals
====, the really-really-strict comparison!

There are deeper historical and technical reasons for these lies, but that doesn't
change the fact that === is not actually strictly exactly equal comparison, in the
strictest sense.

The story gets even more complicated when we consider comparisons of object
values (non-primitives). Consider:

[1, 2, 3] === r 2, 315
{ a: }=={a: +
(

= X % 2) === (x => X % 2)

What's going on here?

It may seem reasonable to assume that an equality check considers the nature or
contents of the value; after all, 42 === 42 considers the actual 42 value and
compares it. But when it comes to objects, a content-aware comparison is
generally referred to as "structural equality.”

JS does not define === as structural equality for object values. Instead, ===
uses identity equality for object values.

In JS, all object values are held by reference (see "Values vs References" in
Appendix A), are assigned and passed by reference-copy, and to our current
discussion, are compared by reference (identity) equality. Consider:

g

var X

var y = Xx;

y===1[11,2,31;

In this snippet, y === x is true because both variables hold a reference to the
same initial array. But the === [1,2,3]1 comparisons both fail because y and
x , respectively, are being compared to new different arrays [1,2,3] . The array

structure and contents don't matter in this comparison, only the reference
identity.

JS does not provide a mechanism for structural equality comparison of object
values, only reference identity comparison. To do structural equality comparison,
you'll need to implement the checks yourself.

But beware, it's more complicated than you'll assume. For example, how might
you determine if two function references are "structurally equivalent"? Even
stringifying to compare their source code text wouldn't take into account things
like closure. JS doesn't provide structural equality comparison because it's almost
intractable to handle all the corner cases!

Coercive Comparisons

Coercion means a value of one type being converted to its respective
representation in another type (to whatever extent possible). As we'll discuss in
Chapter 4, coercion is a core pillar of the JS language, not some optional feature
that can reasonably be avoided.

But where coercion meets comparison operators (like equality), confusion and
frustration unfortunately crop up more often than not.

Few JS features draw more ire in the broader JS community than the ==
operator, generally referred to as the "loose equality" operator. The majority of all
writing and public discourse on JS condemns this operator as poorly designed
and dangerous/bug-ridden when used in JS programs. Even the creator of the
language himself, Brendan Eich, has lamented how it was designed as a big
mistake.

From what | can tell, most of this frustration comes from a pretty short list of
confusing corner cases, but a deeper problem is the extremely widespread
misconception that it performs its comparisons without considering the types of its
compared values.

The == operator performs an equality comparison similarly to how the ===
performs it. In fact, both operators consider the type of the values being
compared. And if the comparison is between the same value type, both == and
=== do exactly the same thing, no difference whatsoever.

If the value types being compared are different, the == differs from === in that it
allows coercion before the comparison. In other words, they both want to compare
values of like types, but == allows type conversions first, and once the types
have been converted to be the same on both sides, then == does the same

thing as === . Instead of "loose equality," the == operator should be described
as "coercive equality."

Consider:

== "42";

In both comparisons, the value types are different, so the == causes the non-
number values ("42" and true) to be converted to numbers (42 and 1,
respectively) before the comparisons are made.

Just being aware of this nature of == —that it prefers primitive numeric
comparisons—helps you avoid most of the troublesome corner cases, such as
staying away from a gotchas like "" == 0 or o == false .

You may be thinking, "Oh, well, | will just always avoid any coercive equality
comparison (using === instead) to avoid those corner cases"! Eh, sorry, that's
not quite as likely as you would hope.

There's a pretty good chance that you'll use relational comparison operators like
<, > (and even <= and >=).

Just like ==, these operators will perform as if they're "strict" if the types being
relationally compared already match, but they'll allow coercion first (generally, to
numbers) if the types differ.

Consider:
var arr = ["1", "10", "100", "1000"];
for (let i = 0; i < arr.length && arr[i] < ;i) {
+

The i < arr.length comparison is "safe" from coercion because i and
arr.length are always numbers. The arr[i] < 500 invokes coercion, though,
because the arr[i] values are all strings. Those comparisons thus become 1 <
500 , 10 < 500 , 100 < 500 , and 1000 < 500 . Since that fourth one is false, the
loop stops after its third iteration.

These relational operators typically use numeric comparisons, except in the case
where both values being compared are already strings; in this case, they use
alphabetical (dictionary-like) comparison of the strings:

var x = "10";
var y = "9";
X <Y

There's no way to get these relational operators to avoid coercion, other than to

just never use mismatched types in the comparisons. That's perhaps admirable

as a goal, but it's still pretty likely you're going to run into a case where the types
may differ.

The wiser approach is not to avoid coercive comparisons, but to embrace and
learn their ins and outs.

Coercive comparisons crop up in other places in JS, such as conditionals (if ,
etc.), which we'll revisit in Appendix A, "Coercive Conditional Comparison."

How We Organize in JS

Two major patterns for organizing code (data and behavior) are used broadly
across the JS ecosystem: classes and modules. These patterns are not mutually
exclusive; many programs can and do use both. Other programs will stick with
just one pattern, or even neither!

In some respects, these patterns are very different. But interestingly, in other
ways, they're just different sides of the same coin. Being proficient in JS requires
understanding both patterns and where they are appropriate (and not!).

Classes

The terms "object-oriented," "class-oriented," and "classes" are all very loaded full

of detail and nuance; they're not universal in definition.

We will use a common and somewhat traditional definition here, the one most
likely familiar to those with backgrounds in "object-oriented" languages like C++
and Java.

A class in a program is a definition of a "type" of custom data structure that
includes both data and behaviors that operate on that data. Classes define how
such a data structure works, but classes are not themselves concrete values. To
get a concrete value that you can use in the program, a class must be instantiated
(with the new keyword) one or more times.

Consider:

class Page {
constructor(text) {
this.text = text;
+

print() {
.log(this.text);
+
+

class Notebook {
constructor() {
this.pages = [];
+

addPage(text) {
var page = new Page(text);
this.pages.push(page);

+
print() {
for (let page of this.pages) {
page.print();
}
+
b
var mathNotes = new Notebook();
mathNotes.addPage("Arithmetic: + — % / ...");
mathNotes.addPage("Trigonometry: sin cos tan ...");

mathNotes.print();

In the Page class, the data is a string of text stored in a this.text member
property. The behavior is print() , a method that dumps the text to the console.

For the Notebook class, the data is an array of Page instances. The behavior is
addPage(..) , a method that instantiates new Page pages and adds them to the
list, as well as print() (which prints out all the pages in the notebook).

The statement mathNotes = new Notebook() creates an instance of the Notebook
class, and page = new Page(text) is where instances of the Page class are
created.

Behavior (methods) can only be called on instances (not the classes themselves),
such as mathNotes.addPage(..) and page.print() .

The class mechanism allows packaging data (text and pages) to be
organized together with their behaviors (e.g., addpage(..) and print()). The
same program could have been built without any class definitions, but it would
likely have been much less organized, harder to read and reason about, and more
susceptible to bugs and subpar maintenance.

Class Inheritance

Another aspect inherent to traditional "class-oriented" design, though a bit less
commonly used in JS, is "inheritance" (and "polymorphism"). Consider:

class Publication {
constructor(title,author,pubDate) {
this.title = title;
this.author = author;
this.pubDate = pubDate;

+
print() {
.log ("
Title: ${ this.title }
By: ${ this.author }
${ this.pubDate }
")
+

This Publication class defines a set of common behavior that any publication
might need.

Now let's consider more specific types of publication, like Book and BlogPost :

class Book extends Publication {
constructor(bookDetails) {

super(
bookDetails.title,
bookDetails.author,
bookDetails.publishedOn

);

this.publisher = bookDetails.publisher;

this.ISBN = bookDetails.ISBN;

+
print() {
super.print();
.log ("
Publisher: ${ this.publisher }
ISBN: ${ this.ISBN }
B H
+

class BlogPost extends Publication {
constructor(title,author,pubDate,URL) {
super(title,author, pubDate);
this.URL = URL;

+
print() {
super.print();
.log(this.URL);
+

Both Book and BlogPost use the extends clause to extend the general
definition of publication to include additional behavior. The super(..) callin
each constructor delegates to the parent Publication class's constructor for its
initialization work, and then they do more specific things according to their
respective publication type (aka, "sub-class" or "child class").

Now consider using these child classes:

var YDKJS = new Book({
title: "You Don't Know JS",
author: "Kyle Simpson",
publishedOn: "June 2014",
publisher: "0'Reilly",
ISBN: '"123456-789"

s

YDKJS.print();

var forAgainstLet = new BlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"
);

forAgainstLet.print();

Notice that both child class instances have a print() method, which was an
override of the inherited print() method from the parent Publication class.
Each of those overridden child class print() methods call super.print() to
invoke the inherited version of the print() method.

The fact that both the inherited and overridden methods can have the same name
and co-exist is called polymorphism.

Inheritance is a powerful tool for organizing data/behavior in separate logical units
(classes), but allowing the child class to cooperate with the parent by
accessing/using its behavior and data.

Modules

The module pattern has essentially the same goal as the class pattern, which is to
group data and behavior together into logical units. Also like classes, modules can
"include" or "access" the data and behaviors of other modules, for cooperation
sake.

But modules have some important differences from classes. Most notably, the
syntax is entirely different.

Classic Modules

ES6 added a module syntax form to native JS syntax, which we'll look at in a
moment. But from the early days of JS, modules was an important and common
pattern that was leveraged in countless JS programs, even without a dedicated
syntax.

The key hallmarks of a classic module are an outer function (that runs at least
once), which returns an "instance" of the module with one or more functions
exposed that can operate on the module instance's internal (hidden) data.

Because a module of this form is just a function, and calling it produces an
"instance" of the module, another description for these functions is "module
factories".

Consider the classic module form of the earlier Publication , Book , and
BlogPost classes:

function Publication() {
var publicAPI = {
print() {
.log ("

Title: ${ title }
By: ${ author }
${ pubDate }

b

return publicAPI;

function Book() {
var pub = Publication(
bookDetails.title,
bookDetails.author,
bookDetails.publishedOn
);

var publicAPI = {
print() {
pub.print();
.log ("
Publisher: ${ bookDetails.publisher }
ISBN: ${ bookDetails.ISBN }
B H

b
return publicAPI;
function BlogPost() {
var pub = Publication(title,author,pubDate);
var publicAPI = {
print() {
pub.print();
.1og(URL) ;

+

return publicAPI;

Comparing these forms to the class forms, there are more similarities than
differences.

The class form stores methods and data on an object instance, which must be
accessed with the this. prefix. With modules, the methods and data are
accessed as identifier variables in scope, without any this. prefix.

With class , the "API" of an instance is implicit in the class definition—also, all
data and methods are public. With the module factory function, you explicitly
create and return an object with any publicly exposed methods, and any data or
other unreferenced methods remain private inside the factory function.

There are other variations to this factory function form that are quite common
across JS, even in 2020; you may run across these forms in different JS
programs: AMD (Asynchronous Module Definition), UMD (Universal Module
Definition), and CommonJS (classic Node.js-style modules). The variations are
minor (not quite compatible). However, all of these forms rely on the same basic
principles.

Consider also the usage (aka, "instantiation") of these module factory functions:

var YDKJIS = Book({
title: "You Don't Know JS",
author: "Kyle Simpson",
publishedOn: "June 2014",
publisher: "O'Reilly",
ISBN: '"123456-789"

1)

YDKJS.print();

var forAgainstlLet = BlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"
);

forAgainstLet.print();

The only observable difference here is the lack of using new , calling the module
factories as normal functions.

ES Modules

ES modules (ESM), introduced to the JS language in ES6, are meant to serve
much the same spirit and purpose as the existing classic modules just described,
especially taking into account important variations and use cases from AMD,
UMD, and CommonJS.

The implementation approach does, however, differ significantly.

First, there's no wrapping function to define a module. The wrapping context is a
file. ESMs are always file-based; one file, one module.

Second, you don't interact with a module's "API" explicitly, but rather use the
export keyword to add a variable or method to its public API definition. If
something is defined in a module but not export ed, then it stays hidden (just as
with classic modules).

Third, and maybe most noticeably different from previously discussed patterns,
you don't "instantiate" an ES module, you just import it to use its single instance.
ESMs are, in effect, "singletons," in that there's only one instance ever created, at
first import in your program, and all other import s just receive a reference to
that same single instance. If your module needs to support multiple instantiations,
you have to provide a classic module-style factory function on your ESM definition
for that purpose.

In our running example, we do assume multiple-instantiation, so these following
snippets will mix both ESM and classic modules.

Consider the file publication.js :

function printDetails() {
.log ("
Title: ${ title }
By: ${ author }
${ pubDate }
)

¥
export function create() {
var publicAPI = {
print() {
printDetails(title,author,pubDate);
}
b
return publicAPI;
}

To import and use this module, from another ES module like blogpost.js :

import { create as createPub } from "publication.js";

function printDetails() {
pub.print();
.1og(URL) ;
+

export function create() {
var pub = createPub(title,author,pubDate);

var publicAPI = {
print() {
printDetails(pub,URL);
}
b

return publicAPI;

And finally, to use this module, we import into another ES module like main.js :

import { create as newBlogPost } from "blogpost.js";

var forAgainstLet = newBlogPost(
"For and against let",
"Kyle Simpson",
"October 27, 2014",
"https://davidwalsh.name/for-and-against-let"
);

forAgainstLet.print();

NOTE:

The as newBlogPost clause in the import statement is optional; if omitted,
a top-level function just named create(..) would be imported. In this case,
I'm renaming it for readability sake; its more generic factory name of
create(..) becomes more semantically descriptive of its purpose as
newBlogPost(..)

As shown, ES modules can use classic modules internally if they need to support
multiple-instantiation. Alternatively, we could have exposed a class from our
module instead of a create(..) factory function, with generally the same
outcome. However, since you're already using ESM at that point, I'd recommend
sticking with classic modules instead of class .

If your module only needs a single instance, you can skip the extra layers of
complexity: export its public methods directly.

The Rabbit Hole Deepens

As promised at the top of this chapter, we just glanced over a wide surface area of
the main parts of the JS language. Your head may still be spinning, but that's
entirely natural after such a firehose of information!

Even with just this "brief" survey of JS, we covered or hinted at a ton of details
you should carefully consider and ensure you are comfortable with. I'm serious
when | suggest: re-read this chapter, maybe several times.

In the next chapter, we're going to dig much deeper into some important aspects
of how JS works at its core. But before you follow that rabbit hole deeper, make
sure you've taken adequate time to fully digest what we've just covered here.

You Don't Know JS Yet: Get Started -
2nd Edition

Chapter 3: Digging to the Roots of JS

If you've read Chapters 1 and 2, and taken the time to digest and percolate,
you're hopefully starting to get JS a little more. If you skipped/skimmed them
(especially Chapter 2), | recommend going back to spend some more time with
that material.

In Chapter 2, we surveyed syntax, patterns, and behaviors at a high level. In this
chapter, our attention shifts to some of the lower-level root characteristics of JS
that underpin virtually every line of code we write.

Be aware: this chapter digs much deeper than you're likely used to thinking about
a programming language. My goal is to help you appreciate the core of how JS
works, what makes it tick. This chapter should begin to answer some of the
"Why?" questions that may be cropping up as you explore JS. However, this
material is still not an exhaustive exposition of the language; that's what the rest
of the book series is for! Our goal here is still just to get started, and become more
comfortable with, the feel of JS, how it ebbs and flows.

Don't run so quickly through this material that you get lost in the weeds. As I've
said a dozen times already, take your time. Even still, you'll probably finish this
chapter with remaining questions. That's OK, because there's a whole book series
ahead of you to keep exploring!

Iteration

Since programs are essentially built to process data (and make decisions on that
data), the patterns used to step through the data have a big impact on the
program's readability.

The iterator pattern has been around for decades, and suggests a "standardized"
approach to consuming data from a source one chunk at a time. The idea is that

it's more common and helpful to iterate the data source—to progressively handle
the collection of data by processing the first part, then the next, and so on, rather
than handling the entire set all at once.

Imagine a data structure that represents a relational database SELECT query,
which typically organizes the results as rows. If this query had only one or a
couple of rows, you could handle the entire result set at once, and assign each
row to a local variable, and perform whatever operations on that data that were
appropriate.

But if the query has 100 or 1,000 (or more!) rows, you'll need iterative processing
to deal with this data (typically, a loop).

The iterator pattern defines a data structure called an "iterator" that has a
reference to an underlying data source (like the query result rows), which exposes
a method like next() . Calling next() returns the next piece of data (i.e., a
"record" or "row" from a database query).

You don't always know how many pieces of data that you will need to iterate
through, so the pattern typically indicates completion by some special value or
exception once you iterate through the entire set and go past the end.

The importance of the iterator pattern is in adhering to a standard way of
processing data iteratively, which creates cleaner and easier to understand code,
as opposed to having every data structure/source define its own custom way of
handling its data.

After many years of various JS community efforts around mutually agreed-upon
iteration techniques, ES6 standardized a specific protocol for the iterator pattern
directly in the language. The protocol defines a next() method whose return is
an object called an iterator result, the object has value and done properties,
where done is a boolean thatis false until the iteration over the underlying
data source is complete.

Consuming lterators

With the ES6 iteration protocol in place, it's workable to consume a data source
one value at a time, checking after each next() call for done to be true to
stop the iteration. But this approach is rather manual, so ES6 also included
several mechanisms (syntax and APIs) for standardized consumption of these
iterators.

One such mechanism is the for..of loop:

var it = B

for (let val of it) {
.log(Iterator value: ${ val }");

b

NOTE:

We'll omit the manual loop equivalent here, but it's definitely less readable
than the for..of loop!

Another mechanism that's often used for consuming iterators is the ...
operator. This operator actually has two symmetrical forms: spread and rest (or
gather, as | prefer). The spread form is an iterator-consumer.

To spread an iterator, you have to have something to spread it into. There are two
possibilities in JS: an array or an argument list for a function call.

An array spread:

var vals = [...it]1;

A function call spread:

doSomethingUseful(...it);

In both cases, the iterator-spread form of ... follows the iterator-consumption

protocol (the same as the for..of loop) to retrieve all available values from an
iterator and place (aka, spread) them into the receiving context (array, argument
list).

Iterables

The iterator-consumption protocol is technically defined for consuming iterables;
an iterable is a value that can be iterated over.

The protocol automatically creates an iterator instance from an iterable, and
consumes just that iterator instance to its completion. This means a single iterable
could be consumed more than once; each time, a new iterator instance would be
created and used.

So where do we find iterables?

ES6 defined the basic data structure/collection types in JS as iterables. This
includes strings, arrays, maps, sets, and others.

Consider:

var arr = [, , 18

for (let val of arr) {
.log(Array value: ${ val }');

}

Since arrays are iterables, we can shallow-copy an array using iterator
consumption via the ... spread operator:

var arrCopy = [...arr I;

We can also iterate the characters in a string one at a time:

var greeting = "Hello world!";
var chars = [...greeting |;

chars;

A Map data structure uses objects as keys, associating a value (of any type) with
that object. Maps have a different default iteration than seen here, in that the
iteration is not just over the map's values but instead its entries. An entry is a
tuple (2-element array) including both a key and a value.

Consider:

var buttonNames = new (OH
buttonNames.set(btnl,""Button 1");
buttonNames.set(btn2,"Button 2");

for (let [btn,btnName] of buttonNames) {
btn.addEventListener("click", function onClick(){
.log(Clicked ${ btnName });
1)

Inthe for..of loop over the default map iteration, we use the [btn,btnNamel
syntax (called "array destructuring") to break down each consumed tuple into the
respective key/value pairs (btnl / "Button 1" and btn2 / "Button 2").

Each of the built-in iterables in JS expose a default iteration, one which likely
matches your intuition. But you can also choose a more specific iteration if
necessary. For example, if we want to consume only the values of the above
buttonNames map, we can call values() to geta values-only iterator:

for (let btnName of buttonNames.values()) {
. log(btnName);
+

Or if we want the index and value in an array iteration, we can make an entries
iterator with the entries() method:

var arr = [, , 18

for (let [idx,vall of arr.entries()) {
.log (" [${ idx }I: ¢{ val }');
+

For the most part, all built-in iterables in JS have three iterator forms available:
keys-only (keys()), values-only (values()), and entries (entries()).

Beyond just using built-in iterables, you can also ensure your own data structures
adhere to the iteration protocol; doing so means you opt into the ability to

consume your data with for..of loops and the ... operator. "Standardizing"
on this protocol means code that is overall more readily recognizable and
readable.

NOTE:

You may have noticed a nuanced shift that occurred in this discussion. We
started by talking about consuming iterators, but then switched to talking
about iterating over iterables. The iteration-consumption protocol expects
an iterable, but the reason we can provide a direct iterator is that an iterator
is just an iterable of itselfl When creating an iterator instance from an
existing iterator, the iterator itself is returned.

Closure

Perhaps without realizing it, almost every JS developer has made use of closure.

In fact, closure is one of the most pervasive programming functionalities across a

majority of languages. It might even be as important to understand as variables or
loops; that's how fundamental it is.

Yet it feels kind of hidden, almost magical. And it's often talked about in either
very abstract or very informal terms, which does little to help us nail down exactly
what it is.

We need to be able to recognize where closure is used in programs, as the
presence or lack of closure is sometimes the cause of bugs (or even the cause of
performance issues).

So let's define closure in a pragmatic and concrete way:

Closure is when a function remembers and continues to access variables
from outside its scope, even when the function is executed in a different

scope.

We see two definitional characteristics here. First, closure is part of the nature of
a function. Objects don't get closures, functions do. Second, to observe a closure,
you must execute a function in a different scope than where that function was
originally defined.

Consider:

function greeting() {
return function who() {
.log("${ msg }, ${ name }!');
b

var hello = greeting("Hello");
var howdy = greeting("Howdy");

hello("Kyle");

hello("Sarah");

howdy ("Grant");

First, the greeting(..) outer function is executed, creating an instance of the
inner function who(..) ; that function closes over the variable msg , which is the
parameter from the outer scope of greeting(..) . When that inner function is
returned, its reference is assigned to the hello variable in the outer scope. Then
we call greeting(..) a second time, creating a new inner function instance, with
a new closure over a new msg , and return that reference to be assigned to
howdy .

When the greeting(..) function finishes running, normally we would expect all
of its variables to be garbage collected (removed from memory). We'd expect
each msg to go away, but they don't. The reason is closure. Since the inner
function instances are still alive (assigned to hello and howdy , respectively),
their closures are still preserving the msg variables.

These closures are not a snapshot of the msg variable's value; they are a direct
link and preservation of the variable itself. That means closure can actually
observe (or make!) updates to these variables over time.

function counter() {
var count = 0;
return function increaseCount(){
count = count + step;
return count;

5B

var incByl = counter(1);
var incBy3 = counter(3);

incBy1();
incBy1();

incBy3();
incBy3();
incBy3();

Each instance of the inner increaseCount() function is closed over both the
count and step variables from its outer counter(..) function's scope. step
remains the same over time, but count is updated on each invocation of that

inner function. Since closure is over the variables and not just snapshots of the
values, these updates are preserved.

Closure is most common when working with asynchronous code, such as with
callbacks. Consider:

function getSomeData() {
ajax(url, function onResponse(){
. Log(

‘Response (from ${ url }): ${ resp }*

s
}

getSomeData("https://some.url/wherever");

The inner function onResponse(..) is closed over url, and thus preserves and
remembers it until the Ajax call returns and executes onResponse(..) . Even
though getSomeData(..) finishes right away, the url parameter variable is kept
alive in the closure for as long as needed.

It's not necessary that the outer scope be a function—it usually is, but not always
—just that there be at least one variable in an outer scope accessed from an inner
function:

for (let [idx,btn] of buttons.entries()) {
btn.addEventListener("click", function onClick(){
.log(Clicked on button (${ idx })!');
3

Because this loop is using 1let declarations, each iteration gets new block-
scoped (aka, local) idx and btn variables; the loop also creates a new inner
onClick(..) function each time. That inner function closes over idx , preserving
it for as long as the click handler is set on the btn . So when each button is
clicked, its handler can print its associated index value, because the handler
remembers its respective idx variable.

Remember: this closure is not over the value (like 1 or 3), but over the variable
idx itself.

Closure is one of the most prevalent and important programming patterns in any
language. But that's especially true of JS; it's hard to imagine doing anything
useful without leveraging closure in one way or another.

If you're still feeling unclear or shaky about closure, the majority of Book 2, Scope
& Closures is focused on the topic.

this Keyword

One of JS's most powerful mechanisms is also one of its most misunderstood: the
this keyword. One common misconception is that a function's this refers to
the function itself. Because of how this works in other languages, another
misconception is that this points the instance that a method belongs to. Both
are incorrect.

As discussed previously, when a function is defined, it is aftached to its enclosing
scope via closure. Scope is the set of rules that controls how references to
variables are resolved.

But functions also have another characteristic besides their scope that influences
what they can access. This characteristic is best described as an execution
context, and it's exposed to the function via its this keyword.

Scope is static and contains a fixed set of variables available at the moment and
location you define a function, but a function's execution context is dynamic,
entirely dependent on how it is called (regardless of where it is defined or even
called from).

this is not a fixed characteristic of a function based on the function's definition,
but rather a dynamic characteristic that's determined each time the function is
called.

One way to think about the execution context is that it's a tangible object whose
properties are made available to a function while it executes. Compare that to
scope, which can also be thought of as an object; except, the scope object is
hidden inside the JS engine, it's always the same for that function, and its
properties take the form of identifier variables available inside the function.

function classroom() {
return function study() {
. log(

*${ teacher } says to study ${ this.topic }°
D8
+;
+

var assignment = classroom("Kyle");

The outer classroom(..) function makes no reference to a this keyword, so it's
just like any other function we've seen so far. But the inner study() function
does reference this , which makes it a this -aware function. In other words, it's
a function that is dependent on its execution context.

NOTE:

study() is also closed over the teacher variable from its outer scope.

The inner study() function returned by classroom("Kyle") is assigned to a
variable called assignment . So how can assignment() (aka study()) be called?

assignment();

In this snippet, we call assignment() as a plain, normal function, without
providing it any execution context.

Since this program is not in strict mode (see Chapter 1, "Strictly Speaking"),
context-aware functions that are called without any context specified default

the context to the global object (window in the browser). As there is no global

variable named topic (and thus no such property on the global object),
this.topic resolves to undefined .

Now consider:

var homework = {
topic: "Js",
assignment: assignment

+

homework.assignment();

A copy of the assignment function reference is set as a property on the

homework object, and then it's called as homework.assignment() . That means the
this for that function call will be the homework object. Hence, this.topic
resolves to "is" .

Lastly:

var otherHomework = {
topic: "Math"
+i

assignment.call(otherHomework);

A third way to invoke a function is with the call(..) method, which takes an
object (otherHomework here) to use for setting the this reference for the
function call. The property reference this.topic resolvesto "Math" .

The same context-aware function invoked three different ways, gives different
answers each time for what object this will reference.

The benefit of this -aware functions—and their dynamic context—is the ability to
more flexibly re-use a single function with data from different objects. A function
that closes over a scope can never reference a different scope or set of variables.
But a function that has dynamic this context awareness can be quite helpful for
certain tasks.

Prototypes

Where this is a characteristic of function execution, a prototype is a
characteristic of an object, and specifically resolution of a property access.

Think about a prototype as a linkage between two objects; the linkage is hidden
behind the scenes, though there are ways to expose and observe it. This
prototype linkage occurs when an object is created; it's linked to another object
that already exists.

A series of objects linked together via prototypes is called the "prototype chain."

The purpose of this prototype linkage (i.e., from an object B to another object A) is
so that accesses against B for properties/methods that B does not have, are
delegated to A to handle. Delegation of property/method access allows two (or
more!) objects to cooperate with each other to perform a task.

Consider defining an object as a normal literal:

var homework = {
topic: "JS"
+

The homework Object only has a single property on it: topic . However, its default
prototype linkage connects to the object.prototype object, which has common
built-in methods on it like toString() and value0f() , among others.

We can observe this prototype linkage delegation from homework to
Object.prototype :

homework.toString();

homework.toString() works even though homework doesn't have a toString()
method defined; the delegation invokes o0bject.prototype.toString() instead.

Object Linkage

To define an object prototype linkage, you can create the object using the
Object.create(..) utility:

var homework = {
topic: "JS"
b

var otherHomework = .create(homework) ;

otherHomework. topic;
The first argument to object.create(..) specifies an object to link the newly
created object to, and then returns the newly created (and linked!) object.

Figure 4 shows how the three objects (otherHomework , homework , and
Object.prototype) are linked in a prototype chain:

Object.prototype

toString()

A

[[Prototype]]

homework

topic: "IS"

A

[[Prototype]]

otherHomework

Fig. 4: Objects in a prototype chain

Delegation through the prototype chain only applies for accesses to lookup the
value in a property. If you assign to a property of an object, that will apply directly
to the object regardless of where that object is prototype linked to.

TIP:

Object.create(null) creates an object that is not prototype linked
anywhere, so it's purely just a standalone object; in some circumstances,
that may be preferable.

Consider:

homework.topic;

otherHomework. topic;

otherHomework.topic = "Math";
otherHomework.topic;

homework.topic;

The assignment to topic creates a property of that name directly on
otherHomework ; there's no effect on the topic property on homework . The next
statement then accesses otherHomework.topic , and we see the non-delegated

answer from that new property: "Math" .

Figure 5 shows the objects/properties after the assignment that creates the
otherHomework.topic property:

Object.prototype

toString()

homework

topic: "IS"

otherHomework

topic: "Math"

Fig. 5: Shadowed property 'topic’

The topic on otherHomework is "shadowing" the property of the same name on
the homework object in the chain.

NOTE:

Another frankly more convoluted but perhaps still more common way of
creating an object with a prototype linkage is using the "prototypal class"
pattern, from before class (see Chapter 2, "Classes") was added in ES6.

We'll cover this topic in more detail in Appendix A, "Prototypal 'Classes™.

this Revisited

We covered the this keyword earlier, but its true importance shines when
considering how it powers prototype-delegated function calls. Indeed, one of the
main reasons this supports dynamic context based on how the function is
called is so that method calls on objects which delegate through the prototype
chain still maintain the expected this .

Consider:

var homework = {
study() {

.log(Please study ${ this.topic }');

I

var jsHomework = .create(homework) ;
jsHomework.topic = "JS";
jsHomework.study();

// Please study JS

var mathHomework = .create(homework) ;
mathHomework.topic = "Math";
mathHomework.study();

// Please study Math

The two objects jsHomework and mathHomework each prototype link to the single

homework object, which has the study() function. jsHomework and

mathHomework are each given their own topic property (see Figure 6).

Object.prototype

toString()
A
E [[Prototype]]
homework
study()
A A
E [[Prototype]] E [[Prototype]]
jsHomework mathHomework

topic: "IS"

Fig. 6: Two objects linked to a common parent

topic: "Math"

jsHomework.study() delegates to homework.study() , butits this (this.topic)

for that execution resolves to jsHomework because of how the function is called,

SO this.topic is "3s" . Similarly for mathHomework.study() delegating to

homework.study() but still resolving this to mathHomework , and thus

this.topic as "Math" .

The preceding code snippet would be far less useful if this was resolved to

homework . Yet, in many other languages, it would seem this would be

homework because the study() method is indeed defined on homework .

Unlike many other languages, JS's this being dynamic is a critical component
of allowing prototype delegation, and indeed class , to work as expected!

Asking "Why?"

The intended take-away from this chapter is that there's a lot more to JS under
the hood than is obvious from glancing at the surface.

As you are getting started learning and knowing JS more closely, one of the most
important skills you can practice and bolster is curiosity, and the art of asking
"Why?" when you encounter something in the language.

Even though this chapter has gone quite deep on some of the topics, many
details have still been entirely skimmed over. There's much more to learn here,
and the path to that starts with you asking the right questions of your code. Asking
the right questions is a critical skill of becoming a better developer.

In the final chapter of this book, we're going to briefly look at how JS is divided, as
covered across the rest of the You Don't Know JS Yet book series. Also, don't
skip Appendix B of this book, which has some practice code to review some of the
main topics covered in this book.

You Don't Know JS Yet: Get Started -
2nd Edition

Chapter 4: The Bigger Picture

This book surveys what you need to be aware of as you get started with JS. The
goal is to fill in gaps that readers newer to JS might have tripped over in their
early encounters with the language. | also hope that we've hinted at enough
deeper detail throughout to pique your curiosity to want to dig more into the
language.

The rest of the books in this series are where we will unpack all of the rest of the
language, in far greater detail than we could have done in a few brief chapters
here.

Remember to take your time, though. Rather than rushing onto the next book in
an attempt to churn through all the books expediently, spend some time going
back over the material in this book. Spend some more time looking through code
in your current projects, and comparing what you see to what's been discussed so
far.

When you're ready, this final chapter divides the organization of the JS language
into three main pillars, then offers a brief roadmap of what to expect from the rest
of the book series, and how | suggest you proceed. Also, don't skip the
appendices, especially Appendix B, "Practice, Practice, Practice!".

Pillar 1: Scope and Closure

The organization of variables into units of scope (functions, blocks) is one of the
most foundational characteristics of any language; perhaps no other characteristic
has a greater impact on how programs behave.

Scopes are like buckets, and variables are like marbles you put into those
buckets. The scope model of a language is like the rules that help you determine
which color marbles go in which matching-color buckets.

Scopes nest inside each other, and for any given expression or statement, only
variables at that level of scope nesting, or in higher/outer scopes, are accessible;
variables from lower/inner scopes are hidden and inaccessible.

This is how scopes behave in most languages, which is called lexical scope. The
scope unit boundaries, and how variables are organized in them, is determined at
the time the program is parsed (compiled). In other words, it's an author-time
decision: where you locate a function/scope in the program determines what the
scope structure of that part of the program will be.

JS is lexically scoped, though many claim it isn't, because of two particular
characteristics of its model that are not present in other lexically scoped
languages.

The first is commonly called hoisting: when all variables declared anywhere in a
scope are treated as if they're declared at the beginning of the scope. The other is
that var -declared variables are function scoped, even if they appear inside a
block.

Neither hoisting nor function-scoped var are sufficient to back the claim that JS
is not lexically scoped. 1let / const declarations have a peculiar error behavior
called the "Temporal Dead Zone" (TDZ) which results in observable but unusable
variables. Though TDZ can be strange to encounter, it's also not an invalidation of
lexical scoping. All of these are just unique parts of the language that should be
learned and understood by all JS developers.

Closure is a natural result of lexical scope when the language has functions as
first-class values, as JS does. When a function makes reference to variables from
an outer scope, and that function is passed around as a value and executed in
other scopes, it maintains access to its original scope variables; this is closure.

Across all of programming, but especially in JS, closure drives many of the most
important programming patterns, including modules. As | see it, modules are as
with the grain as you can get, when it comes to code organization in JS.

To dig further into scope, closures, and how modules work, read Book 2, Scope &
Closures.

Pillar 2: Prototypes

The second pillar of the language is the prototypes system. We covered this topic
in-depth in Chapter 3 ("Prototypes"), but | just want to make a few more
comments about its importance.

JS is one of very few languages where you have the option to create objects
directly and explicitly, without first defining their structure in a class.

For many years, people implemented the class design pattern on top of
prototypes—so-called "prototypal inheritance" (see Appendix A, "Prototypal

'Classes™)—and then with the advent of ES6's class keyword, the language

doubled-down on its inclination toward OO/class-style programming.

But | think that focus has obscured the beauty and power of the prototype system:
the ability for two objects to simply connect with each other and cooperate
dynamically (during function/method execution) through sharing a this context.

Classes are just one pattern you can build on top of such power. But another
approach, in a very different direction, is to simply embrace objects as objects,
forget classes altogether, and let objects cooperate through the prototype chain.
This is called behavior delegation. | think delegation is more powerful than class
inheritance, as a means for organizing behavior and data in our programs.

But class inheritance gets almost all the attention. And the rest goes to functional
programming (FP), as the sort of "anti-class" way of designing programs. This
saddens me, because it snuffs out any chance for exploration of delegation as a
viable alternative.

| encourage you to spend plenty of time deep in Book 3, Objects & Classes, to
see how object delegation holds far more potential than we've perhaps realized.
This isn't an anti- class message, but it is intentionally a "classes aren't the only
way to use objects" message that | want more JS developers to consider.

Object delegation is, | would argue, far more with the grain of JS, than classes
(more on grains in a bit).

Pillar 3: Types and Coercion

The third pillar of JS is by far the most overlooked part of JS's nature.

The vast majority of developers have strong misconceptions about how types
work in programming languages, and especially how they work in JS. A tidal wave
of interest in the broader JS community has begun to shift to "static typing"
approaches, using type-aware tooling like TypeScript or Flow.

| agree that JS developers should learn more about types, and should learn more
about how JS manages type conversions. | also agree that type-aware tooling can
help developers, assuming they have gained and used this knowledge in the first

place!

But | don't agree at all that the inevitable conclusion of this is to decide JS's type
mechanism is bad and that we need to cover up JS's types with solutions outside
the language. We don't have to follow the "static typing" way to be smart and solid
with types in our programs. There are other options, if you're just willing to go
against the grain of the crowd, and with the grain of JS (again, more on that to
come).

Arguably, this pillar is more important than the other two, in the sense that no JS
program will do anything useful if it doesn't properly leverage JS's value types, as
well as the conversion (coercion) of values between types.

Even if you love TypeScript/Flow, you are not going to get the most out of those
tools or coding approaches if you aren't deeply familiar with how the language
itself manages value types.

To learn more about JS types and coercion, check out Book 4, Types & Grammar.
But please don't skip over this topic just because you've always heard that we
should use === and forget about the rest.

Without learning this pillar, your foundation in JS is shaky and incomplete at best.

With the Grain

| have some advice to share on continuing your learning journey with JS, and your
path through the rest of this book series: be aware of the grain (recall various
references to grain earlier in this chapter).

First, consider the grain (as in, wood) of how most people approach and use JS.
You've probably already noticed that these books cut against that grain in many
respects. In YDKJSY, | respect you the reader enough to explain all the parts of
JS, not only some select popular parts. | believe you're both capable and
deserving of that knowledge.

But that is not what you'll find from a lot of other material out there. It also means
that the more you follow and adhere to the guidance from these books—that you
think carefully and analyze for yourself what's best in your code—the more you
will stand out. That can be a good and bad thing. If you ever want to break out
from the crowd, you're going to have to break from how the crowd does it!

But I've also had many people tell me that they quoted some topic/explanation
from these books during a job interview, and the interviewer told the candidate
they were wrong; indeed, people have reportedly lost out on job offers as a result.

As much as possible, | endeavor in these books to provide completely accurate
information about JS, informed generally from the specification itself. But | also
dose out quite a bit of my opinions on how you can interpret and use JS to the
best benefit in your programs. | don't present opinion as fact, or vice versa. You'll
always know which is which in these books.

Facts about JS are not really up for debate. Either the specification says
something, or it doesn't. If you don't like what the specification says, or my
relaying of it, take that up with TC39! If you're in an interview and they claim
you're wrong on the facts, ask them right then and there if you can look it up in the
specification. If the interviewer won't re-consider, then you shouldn't want to work
there anyway.

But if you choose to align with my opinions, you have to be prepared to back up

those choices with why you feel that way. Don't just parrot what | say. Own your

opinions. Defend them. And if someone you were hoping to work with disagrees,
walk away with your head still held high. It's a big JS, and there's plenty of room

for lots of different ways.

In other words, don't be afraid to go against the grain, as | have done with these
books and all my teachings. Nobody can tell you how you will best make use of
JS; that's for you to decide. I'm merely trying to empower you in coming to your
own conclusions, no matter what they are.

On the other hand, there's a grain you really should pay attention to and follow:
the grain of how JS works, at the language level. There are things that work well
and naturally in JS, given the right practice and approach, and there are things
you really shouldn't try to do in the language.

Can you make your JS program look like a Java, C#, or Perl program? What
about Python or Ruby, or even PHP? To varying degrees, sure you can. But
should you?

No, | don't think you should. | think you should learn and embrace the JS way, and
make your JS programs as JS'y as is practical. Some will think that means sloppy
and informal programming, but | don't mean that at all. | just mean that JS has a
lot of patterns and idioms that are recognizably "JS," and going with that grain is
the general path to best success.

Finally, maybe the most important grain to recognize is how the existing
program(s) you're working on, and developers you're working with, do stuff. Don't
read these books and then try to change all that grain in your existing projects
over night. That approach will always fail.

You'll have to shift these things little by little, over time. Work on building
consensus with your fellow developers on why it's important to re-visit and re-
consider an approach. But do so with just one small topic at a time, and let
before-and-after code comparisons do most of the talking. Bring everyone on the
team together to discuss, and push for decisions that are based on analysis and
evidence from the code rather than the inertia of "our senior devs have always
done it this way."

That's the most important advice | can impart to help you learn JS. Always keep
looking for better ways to use what JS gives us to author more readable code.
Everyone who works on your code, including your future self, will thank you!

In Order

So now you've got a broader perspective on what's left to explore in JS, and the
right attitude to approach the rest of your journey.

But one of the most common practical questions | get at this point is, "What order
should | read the books?" There is a straightforward answer... but it also depends.

My suggestion for most readers is to proceed through this series in this order:

1. Get started with a solid foundation of JS from Get Started (Book 1) -- good
news, you've already almost finished this book!

2. In Scope & Closures (Book 2), dig into the first pillar of JS: lexical scope, how
that supports closure, and how the module pattern organizes code.

3. In Objects & Classes (Book 3), focus on the second pillar of JS: how JS's
this works, how object prototypes support delegation, and how prototypes
enable the class mechanism for OO-style code organization.

4. In Types & Grammar (Book 4), tackle the third and final pillar of JS: types and
type coercion, as well as how JS's syntax and grammar define how we write
our code.

5. With the three pillars solidly in place, Sync & Async (Book 5) then explores
how we use flow control to model state change in our programs, both
synchronously (right away) and asynchronously (over time).

6. The series concludes with ES.Next & Beyond (Book 6), a forward look at the
near- and mid-term future of JS, including a variety of features likely coming
to your JS programs before too long.

That's the intended order to read this book series.

However, Books 2, 3, and 4 can generally be read in any order, depending on
which topic you feel most curious about and comfortable exploring first. But | don't
recommend you skip any of these three books—not even Types & Grammar, as
some of you will be tempted to do!—even if you think you already have that topic
down.

Book 5 (Sync & Async) is crucial for deeply understanding JS, but if you start
digging in and find it's too intimidating, this book can be deferred until you're more
experienced with the language. The more JS you've written (and struggled with!),
the more you'll come to appreciate this book. So don't be afraid to come back to it
at a later time.

The final book in the series, ES.Next & Beyond, in some respects stands alone. It
can be read at the end, as | suggest, or right after Getting Started if you're looking
for a shortcut to broaden your radar of what JS is all about. This book will also be
more likely to receive updates in the future, so you'll probably want to re-visit it
occasionally.

However you choose to proceed with YDKJSY, check out the appendices of this
book first, especially practicing the snippets in Appendix B, "Practice, Practice,
Practice!" Did | mention you should go practice!? There's no better way to learn
code than to write it.

You Don't Know JS Yet: Get Started -
2nd Edition

Appendix A: Exploring Further

In this appendix, we're going to explore some topics from the main chapter text in
a bit more detail. Think of this content as an optional preview of some of the more
nuanced details covered throughout the rest of the book series.

Values vs. References

In Chapter 2, we introduced the two main types of values: primitives and objects.
But we didn't discuss yet one key difference between the two: how these values
are assigned and passed around.

In many languages, the developer can choose between assigning/passing a value
as the value itself, or as a reference to the value. In JS, however, this decision is
entirely determined by the kind of value. That surprises a lot of developers from
other languages when they start using JS.

If you assign/pass a value itself, the value is copied. For example:

var myName = "Kyle";

var yourName = myName;

Here, the yourName variable has a separate copy of the "kyle" string from the
value that's stored in myName . That's because the value is a primitive, and
primitive values are always assigned/passed as value copies.

Here's how you can prove there's two separate values involved:

var myName = "Kyle";
var yourName = myName;
myName = "Frank";

. log(myName) ;

. log(yourName) ;

See how yourName wasn't affected by the re-assignment of myName to "Frank" ?
That's because each variable holds its own copy of the value.

By contrast, references are the idea that two or more variables are pointing at the
same value, such that modifying this shared value would be reflected by an
access via any of those references. In JS, only object values (arrays, objects,
functions, etc.) are treated as references.

Consider:

var myAddress = {
street: "123 JS Blvd",
city: "Austin",
state: "TX"

g

var yourAddress = myAddress;

myAddress.street = "456 TS Ave'";

. log(yourAddress.street);

Because the value assigned to myAddress is an object, it's held/assigned by
reference, and thus the assignment to the yourAddress variable is a copy of the
reference, not the object value itself. That's why the updated value assigned to
the myAddress.street is reflected when we access yourAddress.street .
myAddress and yourAddress have copies of the reference to the single shared
object, so an update to one is an update to both.

Again, JS chooses the value-copy vs. reference-copy behavior based on the
value type. Primitives are held by value, objects are held by reference. There's no
way to override this in JS, in either direction.

So Many Function Forms

Recall this snippet from the "Functions" section in Chapter 2:

var awesomeFunction = function() {

return amazingStuff;

+;

The function expression here is referred to as an anonymous function expression,
since it has no name identifier between the function keyword and the (..)
parameter list. This point confuses many JS developers because as of ES6, JS
performs a "name inference" on an anonymous function:

awesomeFunction.name;

The name property of a function will reveal either its directly given name (in the
case of a declaration) or its inferred name in the case of an anonymous function
expression. That value is generally used by developer tools when inspecting a
function value or when reporting an error stack trace.

So even an anonymous function expression might get a name. However, name
inference only happens in limited cases such as when the function expression is
assigned (with =). If you pass a function expression as an argument to a
function call, for example, no name inference occurs; the name property will be
an empty string, and the developer console will usually report "(anonymous
function)”.

Even if a name is inferred, it's still an anonymous function. Why? Because the
inferred name is a metadata string value, not an available identifier to refer to the
function. An anonymous function doesn't have an identifier to use to refer to itself
from inside itself—for recursion, event unbinding, etc.

Compare the anonymous function expression form to:

var awesomeFunction = function someName() {

return amazingStuff;

4

awesomeFunction.name;

This function expression is a named function expression, since the identifier

someName is directly associated with the function expression at compile time; the
association with the identifier awesomeFunction still doesn't happen until runtime
at the time of that statement. Those two identifiers don't have to match;
sometimes it makes sense to have them be different, other times it's better to
have them be the same.

Notice also that the explicit function name, the identifier someName , takes
precedence when assigning a name for the name property.

Should function expressions be hamed or anonymous? Opinions vary widely on
this. Most developers tend to be unconcerned with using anonymous functions.
They're shorter, and unquestionably more common in the broad sphere of JS
code out there.

In my opinion, if a function exists in your program, it has a purpose; otherwise,
take it out! And if it has a purpose, it has a natural name that describes that
purpose.

If a function has a name, you the code author should include that name in the
code, so that the reader does not have to infer that name from reading and
mentally executing that function's source code. Even a trivial function body like x
* 2 has to be read to infer a name like "double" or "multBy2"; that brief extra
mental work is unnecessary when you could just take a second to name the
function "double" or "multBy2" once, saving the reader that repeated mental work
every time it's read in the future.

There are, regrettably in some respects, many other function definition forms in
JS as of early 2020 (maybe more in the future!).

Here are some more declaration forms:

// generator function declaration
function *two() { .. }

// async function declaration
async function three() { .. }

// async generator function declaration
async function *four() { .. }

// named function export declaration (ES6 modules)

export function five() { .. }

And here are some more of the (many!) function expression forms:

// IIFE
(function(){ .. }();
(function namedIIFE(){ .. })();

// asynchronous IIFE
(async function(){ .. })();
(async function namedAIIFE(){ .. })();

// arrow function expressions

var f;

f = = 42;

f = = X *x 7}

f=(x) =>x % 2;

f=() => X x y;
f=x=({xtxx21});
f=x={ return x * 2; };
f = async x => {

var y = await doSomethingAsync(x);
return y x 2;

4

someOperation(=> X % DB

/] .

Keep in mind that arrow function expressions are syntactically anonymous,
meaning the syntax doesn't provide a way to provide a direct name identifier for
the function. The function expression may get an inferred name, but only if it's one
of the assignment forms, not in the (more common!) form of being passed as a
function call argument (as in the last line of the snippet).

Since | don't think anonymous functions are a good idea to use frequently in your
programs, I'm not a fan of using the => arrow function form. This kind of function
actually has a specific purpose (i.e., handling the this keyword lexically), but
that doesn't mean we should use it for every function we write. Use the most
appropriate tool for each job.

Functions can also be specified in class definitions and object literal definitions.
They're typically referred to as "methods" when in these forms, though in JS this
term doesn't have much observable difference over "function”:

class SomethingKindaGreat {
cooWethod() { .. }
boringMethod() { .. }

var EntirelyDifferent = {
cooWethod() { .. },

boringMethod() { .. },

oldSchool: function() { .. }

Phew! That's a lot of different ways to define functions.

There's no simple shortcut path here; you just have to build familiarity with all the
function forms so you can recognize them in existing code and use them
appropriately in the code you write. Study them closely and practice!

Coercive Conditional Comparison

Yes, that section name is quite a mouthful. But what are we talking about? We're
talking about conditional expressions needing to perform coercion-oriented
comparisons to make their decisions.

if and ? : -ternary statements, as well as the test clauses in while and for
loops, all perform an implicit value comparison. But what sort? Is it "strict" or
"coercive"? Both, actually.

Consider:

while (x) {

You might think of these (x) conditional expressions like this:

var x = 1;

if (x ==) {

}

while (x ==) {
X = B

In this specific case -- the value of x being 1 -- that mental model works, but
it's not accurate more broadly. Consider:

var x = "hello";

Oops. So what is the if statement actually doing? This is the more accurate
mental model:

var x = "hello";

if ((x) ==) {

¥

if ((x) ===) {

+
Since the Boolean(..) function always returns a value of type boolean, the ==
vs === in this snippet is irrelevant; they'll both do the same thing. But the

important part is to see that before the comparison, a coercion occurs, from
whatever type x currently is, to boolean.

You just can't get away from coercions in JS comparisons. Buckle down and learn
them.

Prototypal "Classes”

In Chapter 3, we introduced prototypes and showed how we can link objects
through a prototype chain.

Another way of wiring up such prototype linkages served as the (honestly, ugly)
predecessor to the elegance of the ES6 class system (see Chapter 2,
"Classes"), and is referred to as prototypal classes.

TIP:

While this style of code is quite uncommon in JS these days, it's still
perplexingly rather common to be asked about it in job interviews!

Let's first recall the object.create(..) style of coding:

{

var Classroom

welcome() {
.log("Welcome, students!");
+
18
var mathClass = .create(Classroom);

mathClass.welcome();

Here, a mathClass object is linked via its prototype to a Classroom object.
Through this linkage, the function call mathClass.welcome() is delegated to the
method defined on classroom .

The prototypal class pattern would have labeled this delegation behavior
"inheritance," and alternatively have defined it (with the same behavior) as:
function Classroom() {
+

Classroom.prototype.welcome = function hello() {
.log("Welcome, students!™);

X
var mathClass = new Classroom();

mathClass.welcome();

All functions by default reference an empty object at a property named

prototype . Despite the confusing naming, this is not the function's prototype
(where the function is prototype linked to), but rather the prototype object to link to
when other objects are created by calling the function with new .

We add a welcome property on that empty object (called Classroom.prototype),
pointing at the hello() function.

Then new Classroom() creates a new object (assigned to mathClass), and
prototype links it to the existing Classroom.prototype object.

Though mathClass does not have a welcome() property/function, it successfully
delegates to the function Classroom.prototype.welcome() .

This "prototypal class" pattern is now strongly discouraged, in favor of using ES6's
class mechanism:

class Classroom {
constructor() {
/T

welcome() {
. log("Welcome, students!");

var mathClass = new Classroom();
mathClass.welcome();

// Welcome, students!

Under the covers, the same prototype linkage is wired up, but this class syntax
fits the class-oriented design pattern much more cleanly than "prototypal classes".

You Don't Know JS Yet: Get Started -
2nd Edition

Appendix B: Practice, Practice,
Practice!

In this appendix, we'll explore some exercises and their suggested solutions.
These are just to get you started with practice over the concepts from the book.

Practicing Comparisons

Let's practice working with value types and comparisons (Chapter 4, Pillar 3)
where coercion will need to be involved.

scheduleMeeting(..) should take a start time (in 24-hour format as a string
"hh:mm") and a meeting duration (number of minutes). It should return true if
the meeting falls entirely within the work day (according to the times specified in
dayStart and dayEnd); return false if the meeting violates the work day
bounds.

const dayStart = "07:30";
const dayEnd = "17:45";

function scheduleMeeting() {

S

scheduleMeeting("7:00",15);
scheduleMeeting("07:15",30);
scheduleMeeting("7:30",30);
scheduleMeeting("11:30",60);
scheduleMeeting("17:00",45);
)
)

scheduleMeeting("17:30",
scheduleMeeting("18:00",

Try to solve this yourself first. Consider the usage of equality and relational
comparison operators, and how coercion impacts this code. Once you have code
that works, compare your solution(s) to the code in "Suggested Solutions" at the
end of this appendix.

Practicing Closure

Now let's practice with closure (Chapter 4, Pillar 1).

The range(..) function takes a number as its first argument, representing the
first number in a desired range of numbers. The second argument is also a
number representing the end of the desired range (inclusive). If the second

argument is omitted, then another function should be returned that expects that
argument.

function range() {
+

range(3,3);
range(3,8);
range(3,0);

var start3 = range(3);
var start4 = range(4);

start3(3);
start3(8);
start3(0)

start4(6);

Try to solve this yourself first.

Once you have code that works, compare your solution(s) to the code in
"Suggested Solutions" at the end of this appendix.

Practicing Prototypes

Finally, let's work on this and objects linked via prototype (Chapter 4, Pillar 2).

Define a slot machine with three reels that can individually spin() , and then
display() the current contents of all the reels.

The basic behavior of a single reel is defined in the reel object below. But the
slot machine needs individual reels—objects that delegate to reel , and which
each have a position property.

A reel only knows how to display() its current slot symbol, but a slot machine
typically shows three symbols per reel: the current slot (position), one slot
above (position - 1), and one slot below (position + 1). So displaying the slot
machine should end up displaying a 3 x 3 grid of slot symbols.

function randMax() {
return Ltrunc(* .random()) % max;

var reel = {
symbols: [
Doyo, OO OG0 O0) Ol 0.0 OEh, Tl
]I
spin() {
if (this.position ==) {
this.position = randMax(
this.symbols. length -
D8
}
this.position = (
this.position + + randMax()
) % this.symbols.length;
+
display() {
if (this.position ==) {
this.position = randMax(
this.symbols. length -
};
}
return this.symbols[this.position];

var slotMachine = {

reels: [
// this slot machine needs 3 separate reels
// hint: Object.create(..)

]I

spin() {
this.reels.forEach(function spinReel()

reel.spin();

1);

}I

display() {
// TODO

3

slotMachine.spin();
slotMachine.display();

/7 | *
/1 % | s
/] s]|

slotMachine.spin();
slotMachine.display();
//O‘A‘.‘

/] 4| v | o
//@‘0‘*

Try to solve this yourself first.
Hints:

e Use the % modulo operator for wrapping position as you access symbols
circularly around a reel.

e Use object.create(..) to create an object and prototype-link it to another
object. Once linked, delegation allows the objects to share this context
during method invocation.

¢ Instead of modifying the reel object directly to show each of the three
positions, you can use another temporary object (0bject.create(..) again)
with its own position , to delegate from.

Once you have code that works, compare your solution(s) to the code in
"Suggested Solutions" at the end of this appendix.

Suggested Solutions

Keep in mind that these suggested solutions are just that: suggestions. There's
many different ways to solve these practice exercises. Compare your approach to
what you see here, and consider the pros and cons of each.

Suggested solution for "Comparisons” (Pillar 3) practice:

const dayStart = "07:30";
const dayEnd = "17:45";

function scheduleMeeting(startTime,durationMinutes) {

var

[, meetingStartHour, meetingStartMinutes] =
startTime.match(/~(\d{1,2}): (\d{2})$/) [[| [];

durationMinutes = Number(durationMinutes);

if (

) {

typeof meetingStartHour == "string" &&
typeof meetingStartMinutes == "string"

let durationHours =
Math.floor(durationMinutes / 60);
durationMinutes =
durationMinutes - (durationHours * 60);
let meetingEndHour =
Number(meetingStartHour) + durationHours;
let meetingEndMinutes =
Number(meetingStartMinutes) +
durationMinutes;

if (meetingEndMinutes >= 60) {
meetingEndHour = meetingEndHour + 1;
meetingEndMinutes =
meetingEndMinutes - 60;

// re-compose fully-qualified time strings
// (to make comparison easier)
let meetingStart = "${
meetingStartHour.padStart(2,"0")
Frgf
meetingStartMinutes.padStart(2,"0")
i
let meetingEnd = " ${
String(meetingEndHour).padStart(2,"0")
Frgd
String(meetingEndMinutes).padStart(2,"0")
s

// NOTE: since expressions are all strings,
// comparisons here are alphabetic, but it's
// safe here since they're fully qualified
// time strings (ie, "@7:15" < "@7:30")
return (

meetingStart >= dayStart &&

meetingEnd <= dayEnd
)i

+

return false;
+
scheduleMeeting("7:00",15); // false
scheduleMeeting("07:15",30); // false
scheduleMeeting("7:30",30); // true

scheduleMeeting("11:30",60); // true
scheduleMeeting("17:00",45); // true
scheduleMeeting("17:30",30); // false
scheduleMeeting("18:00",15); // false

Suggested solution for "Closure" (Pillar 1) practice:

function range(start,end) {
start = Number(start) || 0;

if (end === undefined) {
return function getEnd(end) {
return getRange(start,end);

i
}
else {
end = Number(end) || 0;
return getRange(start,end);
}

[/ Fkskoktkorskokskokokokskokokskokokokokokok

function getRange(start,end) {
var ret = [1;
for (let i = start; i <= end; i++) {
ret.push(i);
}

return ret;

range(3,3); // [3]
range(3,8); // 13,4,5,6,7,8]
range(3,0); /7 11

var start3 = range(3);
var start4 = range(4);

start3(3); // [3]
start3(8); // [3,4,5,6,7,8]
start3(0); // 1

start4(6); // [4,5,6]

Suggested solution for "Prototypes” (Pillar 2) practice:

function randMax() {
return Ltrunc(* .random()) % max;

var reel = {
symbols: [
oo, @O OG0 O Tl 0.0 OEh, Gl
]I
spin() {
if (this.position ==) {
this.position = randMax(
this.symbols. length -
D8
}
this.position = (
this.position + + randMax()
) % this.symbols.length;
+
display() {
if (this.position ==) {
this.position = randMax(
this.symbols.length -
};
}
return this.symbols[this.position];

var slotMachine = {
reels: [
.create(reel),
.create(reel),
.create(reel)
]I
spin() {
this.reels.forEach(function spinReel(H{
reel.spin();
1);
}I
display() {
var lines = [];

// display all 3 lines on the slot machine
for (

let linePos = ; linePos <= 1; linePos++

) {
let line = this.reels.map(
function getSlot(){
var slot = .create(reel);
slot.position = (
reel.symbols.length +
reel.position +
linePos
) % reel.symbols.length;
return reel.display.call(slot);

);
lines.push(line.join(" | "));
return lines.join("\n");
+

slotMachine.spin();

slotMachine.display();

slotMachine.spin();
slotMachine.display();

That's it for this book. But now it's time to look for real projects to practice these
ideas on. Just keep coding, because that's the best way to learn!

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

SECOND EDITION

Yoo DoN'T KNow
JS Jr

SCOPE &
CLOSURES

A l E f]
« i Y
FrontendMastens Kyle Simpson

Purchase ebook/PDF from Leanpub

Table of Contents

e Foreword (by Sarah Drasner)

e Preface

e Chapter 1: What's the Scope?

e Chapter 2: lllustrating Lexical Scope
e Chapter 3: The Scope Chain

e Chapter 4: Around the Global Scope
e Chapter 5: The (Not So) Secret Lifecycle of Variables
e Chapter 6: Limiting Scope Exposure
e Chapter 7: Using Closures

e Chapter 8: The Module Pattern

e Appendix A: Exploring Further

e Appendix B: Practice

https://leanpub.com/ydkjsy-scope-closures
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/toc1.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/foreword1.md
https://sarah.dev/
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/preface.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/ch7.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/ch8.md

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 1: What's the Scope?

By the time you've written your first few programs, you're likely getting somewhat
comfortable with creating variables and storing values in them. Working with
variables is one of the most foundational things we do in programming!

But you may not have considered very closely the underlying mechanisms used
by the engine to organize and manage these variables. | don't mean how the
memory is allocated on the computer, but rather: how does JS know which
variables are accessible by any given statement, and how does it handle two
variables of the same name?

The answers to questions like these take the form of well-defined rules called
scope. This book will dig through all aspects of scope—how it works, what it's
useful for, gotchas to avoid—and then point toward common scope patterns that
guide the structure of programs.

Our first step is to uncover how the JS engine processes our program before it
runs.

About This Book

Welcome to book 2 in the You Don't Know JS Yet series! If you already finished
Get Started (the first book), you're in the right spot! If not, before you proceed |
encourage you to start there for the best foundation.

Our focus will be the first of three pillars in the JS language: the scope system
and its function closures, as well as the power of the module design pattern.

JS is typically classified as an interpreted scripting language, so it's assumed by
most that JS programs are processed in a single, top-down pass. But JS is in fact
parsed/compiled in a separate phase before execution begins. The code
author's decisions on where to place variables, functions, and blocks with respect
to each other are analyzed according to the rules of scope, during the initial
parsing/compilation phase. The resulting scope structure is generally unaffected
by runtime conditions.

JS functions are themselves first-class values; they can be assigned and passed
around just like numbers or strings. But since these functions hold and access
variables, they maintain their original scope no matter where in the program the
functions are eventually executed. This is called closure.

Modules are a code organization pattern characterized by public methods that
have privileged access (via closure) to hidden variables and functions in the
internal scope of the module.

Compiled vs. Interpreted

You may have heard of code compilation before, but perhaps it seems like a
mysterious black box where source code slides in one end and executable
programs pop out the other.

It's not mysterious or magical, though. Code compilation is a set of steps that
process the text of your code and turn it into a list of instructions the computer can
understand. Typically, the whole source code is transformed at once, and those
resulting instructions are saved as output (usually in a file) that can later be
executed.

You also may have heard that code can be interpreted, so how is that different
from being compiled?

Interpretation performs a similar task to compilation, in that it transforms your
program into machine-understandable instructions. But the processing model is
different. Unlike a program being compiled all at once, with interpretation the
source code is transformed line by line; each line or statement is executed before
immediately proceeding to processing the next line of the source code.

e s
Compilation:
0100110101601010
- 1100010101011101
— 0111610101010110
—_— 10011010160101000
— ¢ # 81010101 06451116 # kP
[R— » » 1010101116000011 »
— 1001010101011001
—_— 0000100100001010
1001010101010101
Interpretation: ¢ « ?Q
—_ —’ P I (XY

Fig. 1: Compiled vs. Interpreted Code

Figure 1 illustrates compilation vs. interpretation of programs.

Are these two processing models mutually exclusive? Generally, yes. However,
the issue is more nuanced, because interpretation can actually take other forms
than just operating line by line on source code text. Modern JS engines actually
employ numerous variations of both compilation and interpretation in the handling
of JS programs.

Recall that we surveyed this topic in Chapter 1 of the Get Started book. Our
conclusion there is that JS is most accurately portrayed as a compiled language.
For the benefit of readers here, the following sections will revisit and expand on
that assertion.

Compiling Code

But first, why does it even matter whether JS is compiled or not?

Scope is primarily determined during compilation, so understanding how
compilation and execution relate is key in mastering scope.

In classic compiler theory, a program is processed by a compiler in three basic
stages:

1. Tokenizing/Lexing: breaking up a string of characters into meaningful (to the
language) chunks, called tokens. For instance, consider the program: var a
= 2; . This program would likely be broken up into the following tokens: var ,
a, =, 2,and ; . Whitespace may or may not be persisted as a token,
depending on whether it's meaningful or not.

(The difference between tokenizing and lexing is subtle and academic, but it
centers on whether or not these tokens are identified in a stateless or stateful
way. Put simply, if the tokenizer were to invoke stateful parsing rules to figure
out whether a should be considered a distinct token or just part of another
token, that would be lexing.)

2. Parsing: taking a stream (array) of tokens and turning it into a tree of nested
elements, which collectively represent the grammatical structure of the
program. This is called an Abstract Syntax Tree (AST).

For example, the tree for var a = 2; might start with a top-level node called
VariableDeclaration , with a child node called 1dentifier (whose value is

a), and another child called AssignmentExpression which itself has a child
called NumericLiteral (whose valueis 2).

3. Code Generation: taking an AST and turning it into executable code. This
part varies greatly depending on the language, the platform it's targeting, and
other factors.

The JS engine takes the just described AST for var a = 2; and turns it into
a set of machine instructions to actually create a variable called a (including
reserving memory, etc.), and then store a value into a .

NOTE:

The implementation details of a JS engine (utilizing system memory
resources, etc.) is much deeper than we will dig here. We'll keep our focus
on the observable behavior of our programs and let the JS engine manage
those deeper system-level abstractions.

The JS engine is vastly more complex than just these three stages. In the process
of parsing and code generation, there are steps to optimize the performance of
the execution (i.e., collapsing redundant elements). In fact, code can even be re-
compiled and re-optimized during the progression of execution.

So, I'm painting only with broad strokes here. But you'll see shortly why these
details we do cover, even at a high level, are relevant.

JS engines don't have the luxury of an abundance of time to perform their work
and optimizations, because JS compilation doesn't happen in a build step ahead
of time, as with other languages. It usually must happen in mere microseconds (or
less!) right before the code is executed. To ensure the fastest performance under
these constraints, JS engines use all kinds of tricks (like JITs, which lazy compile
and even hot re-compile); these are well beyond the "scope" of our discussion
here.

Required: Two Phases

To state it as simply as possible, the most important observation we can make
about processing of JS programs is that it occurs in (at least) two phases:
parsing/compilation first, then execution.

The separation of a parsing/compilation phase from the subsequent execution
phase is observable fact, not theory or opinion. While the JS specification does
not require "compilation" explicitly, it requires behavior that is essentially only
practical with a compile-then-execute approach.

There are three program characteristics you can observe to prove this to yourself:
syntax errors, early errors, and hoisting.

Syntax Errors from the Start

Consider this program:

var greeting = "Hello";
. log(greeting);

greeting = ."Hi";

This program produces no output ("Hello" is not printed), but instead throws a

SyntaxError about the unexpected . token right before the "Hi" string. Since
the syntax error happens after the well-formed console.log(..) statement, if JS
was executing top-down line by line, one would expect the "Hello" message
being printed before the syntax error being thrown. That doesn't happen.

In fact, the only way the JS engine could know about the syntax error on the third
line, before executing the first and second lines, is by the JS engine first parsing
the entire program before any of it is executed.

Early Errors

Next, consider:

. Llog("Howdy");

saySomething("Hello","Hi");

function saySomething() {

.log(greeting);

The "Howdy" message is not printed, despite being a well-formed statement.

Instead, just like the snippet in the previous section, the SyntaxError here is
thrown before the program is executed. In this case, it's because strict-mode
(opted in for only the saySomething(..) function here) forbids, among many other
things, functions to have duplicate parameter names; this has always been
allowed in non-strict-mode.

The error thrown is not a syntax error in the sense of being a malformed string of
tokens (like ."Hi" prior), but in strict-mode is nonetheless required by the
specification to be thrown as an "early error" before any execution begins.

But how does the JS engine know that the greeting parameter has been
duplicated? How does it know that the saySomething(..) function is even in strict-
mode while processing the parameter list (the "use strict" pragma appears
only later, in the function body)?

Again, the only reasonable explanation is that the code must first be fully parsed
before any execution occurs.

Hoisting
Finally, consider:

function saySomething() {
var greeting = "Hello";
{
greeting = "Howdy";
let greeting = "Hi";
.log(greeting);

b

saySomething();

The noted ReferenceError occurs from the line with the statement greeting =
"Howdy" . What's happening is that the greeting variable for that statement
belongs to the declaration on the next line, let greeting = "Hi" , rather than to
the previous var greeting = "Hello" statement.

The only way the JS engine could know, at the line where the error is thrown, that
the next statement would declare a block-scoped variable of the same name
(greeting) is if the JS engine had already processed this code in an earlier pass,

and already set up all the scopes and their variable associations. This processing
of scopes and declarations can only accurately be accomplished by parsing the
program before execution.

The ReferenceError here technically comes from greeting = "Howdy" accessing
the greeting variable too early, a conflict referred to as the Temporal Dead
Zone (TDZ). Chapter 5 will cover this in more detail.

WARNING:

It's often asserted that 1et and const declarations are not hoisted, as an
explanation of the TDZ behavior just illustrated. But this is not accurate.
We'll come back and explain both the hoisting and TDZ of 1let / const in
Chapter 5.

Hopefully you're now convinced that JS programs are parsed before any
execution begins. But does it prove they are compiled?

This is an interesting question to ponder. Could JS parse a program, but then
execute that program by interpreting operations represented in the AST without
first compiling the program? Yes, that is possible. But it's extremely unlikely,
mostly because it would be extremely inefficient performance wise.

It's hard to imagine a production-quality JS engine going to all the trouble of
parsing a program into an AST, but not then converting (aka, "compiling") that
AST into the most efficient (binary) representation for the engine to then execute.

Many have endeavored to split hairs with this terminology, as there's plenty of
nuance and "well, actually..." interjections floating around. But in spirit and in
practice, what the engine is doing in processing JS programs is much more alike
compilation than not.

Classifying JS as a compiled language is not concerned with the distribution
model for its binary (or byte-code) executable representations, but rather in
keeping a clear distinction in our minds about the phase where JS code is
processed and analyzed; this phase observably and indisputedly happens before
the code starts to be executed.

We need proper mental models of how the JS engine treats our code if we want
to understand JS and scope effectively.

Compiler Speak

With awareness of the two-phase processing of a JS program (compile, then
execute), let's turn our attention to how the JS engine identifies variables and
determines the scopes of a program as it is compiled.

First, let's examine a simple JS program to use for analysis over the next several
chapters:

var students = [

{ id: , name: "Kyle" },
{ id: , hame: "Suzy" },
{ id: , name: “Frank" },
{ id: 6, name: "Sarah" }
I;
function getStudentName() {

for (let student of students) {
if (student.id == studentID) {
return student.name;

¥
+
var nextStudent = getStudentName(73);

. log(nextStudent);

Other than declarations, all occurrences of variables/identifiers in a program serve
in one of two "roles": either they're the target of an assignment or they're the
source of a value.

(When | first learned compiler theory while earning my computer science degree,
we were taught the terms "LHS" (aka, farget) and "RHS" (aka, source) for these
roles, respectively. As you might guess from the "L" and the "R", the acronyms
mean "Left-Hand Side" and "Right-Hand Side", as in left and right sides of an =
assignment operator. However, assignment targets and sources don't always
literally appear on the left or right of an =, so it's probably clearer to think in
terms of target / source rather than left / right.)

How do you know if a variable is a target? Check if there is a value that is being
assigned to it; if so, it's a target. If not, then the variable is a source.

For the JS engine to properly handle a program's variables, it must first label each
occurrence of a variable as target or source. We'll dig in now to how each role is
determined.

Targets

What makes a variable a target? Consider:

students = [

This statement is clearly an assignment operation; remember, the var students
part is handled entirely as a declaration at compile time, and is thus irrelevant
during execution; we left it out for clarity and focus. Same with the nextStudent =
getStudentName(73) statement.

But there are three other farget assignment operations in the code that are
perhaps less obvious. One of them:

for (let student of students) {

That statement assigns a value to student for each iteration of the loop. Another
target reference:

getStudentName(73)

But how is that an assignment to a target? Look closely: the argument 73 is
assigned to the parameter studentID .

And there's one last (subtle) target reference in our program. Can you spot it?

Did you identify this one?

function getStudentName() {

A function declaration is a special case of a target reference. You can think of it
sort of like var getStudentName = function(studentID) , but that's not exactly
accurate. An identifier getStudentName is declared (at compile time), but the =
function(studentID) partis also handled at compilation; the association between
getStudentName and the function is automatically set up at the beginning of the
scope rather than waiting for an = assignment statement to be executed.

NOTE:

This automatic association of function and variable is referred to as "function
hoisting", and is covered in detail in Chapter 5.

Sources

So we've identified all five target references in the program. The other variable
references must then be source references (because that's the only other
option!).

In for (let student of students) , we said that student is a target, but
students is a source reference. In the statement if (student.id == studentID) ,
both student and studentID are source references. student is also a source
reference in return student.name .

In getStudentName(73) , getStudentName is a source reference (which we hope
resolves to a function reference value). In console.log(nextStudent) , console IS
a source reference, as is nextStudent .

NOTE:

In case you were wondering, id , name ,and log are all properties, not
variable references.

What's the practical importance of understanding targets vs. sources? In Chapter
2, we'll revisit this topic and cover how a variable's role impacts its lookup
(specifically, if the lookup fails).

Cheating: Runtime Scope Modifications

It should be clear by now that scope is determined as the program is compiled,
and should not generally be affected by runtime conditions. However, in non-
strict-mode, there are technically still two ways to cheat this rule, modifying a
program's scopes during runtime.

Neither of these techniques should be used—they're both dangerous and
confusing, and you should be using strict-mode (where they're disallowed)
anyway. But it's important to be aware of them in case you run across them in
some programs.

The eval(..) function receives a string of code to compile and execute on the

fly during the program runtime. If that string of code has a var or function

declaration in it, those declarations will modify the current scope that the
eval(..) is currently executing in:

function badIdea() {

("var oops = 'Ugh!';");
. log(oops);
b
badIdea();
If the eval(..) had not been present, the oops variable in console. log(oops)
would not exist, and would throw a ReferenceError . But eval(..) modifies the

scope of the badIdea() function at runtime. This is bad for many reasons,
including the performance hit of modifying the already compiled and optimized
scope, every time badIdea() runs.

The second cheat is the with keyword, which essentially dynamically turns an
object into a local scope—its properties are treated as identifiers in that new
scope's block:

var badIdea = { oops: "Ugh!" };

with (badIdea) {
. log(oops);
H

The global scope was not modified here, but badidea was turned into a scope at
runtime rather than compile time, and its property oops becomes a variable in
that scope. Again, this is a terrible idea, for performance and readability reasons.

At all costs, avoid eval(..) (atleast, eval(..) creating declarations)and
with . Again, neither of these cheats is available in strict-mode, so if you just use
strict-mode (you should!) then the temptation goes away!

Lexical Scope

We've demonstrated that JS's scope is determined at compile time; the term for
this kind of scope is "lexical scope”. "Lexical" is associated with the "lexing" stage
of compilation, as discussed earlier in this chapter.

To narrow this chapter down to a useful conclusion, the key idea of "lexical scope"
is that it's controlled entirely by the placement of functions, blocks, and variable
declarations, in relation to one another.

If you place a variable declaration inside a function, the compiler handles this
declaration as it's parsing the function, and associates that declaration with the
function's scope. If a variable is block-scope declared (let / const), thenit's
associated with the nearest enclosing { .. } block, rather than its enclosing
function (as with var).

Furthermore, a reference (farget or source role) for a variable must be resolved as
coming from one of the scopes that are lexically available to it; otherwise the
variable is said to be "undeclared" (which usually results in an error!). If the
variable is not declared in the current scope, the next outer/enclosing scope will
be consulted. This process of stepping out one level of scope nesting continues
until either a matching variable declaration can be found, or the global scope is
reached and there's nowhere else to go.

It's important to note that compilation doesn't actually do anything in terms of
reserving memory for scopes and variables. None of the program has been
executed yet.

Instead, compilation creates a map of all the lexical scopes that lays out what the
program will need while it executes. You can think of this plan as inserted code for
use at runtime, which defines all the scopes (aka, "lexical environments") and
registers all the identifiers (variables) for each scope.

In other words, while scopes are identified during compilation, they're not actually
created until runtime, each time a scope needs to run. In the next chapter, we'll
sketch out the conceptual foundations for lexical scope.

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 2: lllustrating Lexical Scope

In Chapter 1, we explored how scope is determined during code compilation, a
model called "lexical scope." The term "lexical" refers to the first stage of
compilation (lexing/parsing).

To properly reason about our programs, it's important to have a solid conceptual
foundation of how scope works. If we rely on guesses and intuition, we may
accidentally get the right answers some of the time, but many other times we're
far off. This isn't a recipe for success.

Like way back in grade school math class, getting the right answer isn't enough if
we don't show the correct steps to get there! We need to build accurate and
helpful mental models as foundation moving forward.

This chapter will illustrate scope with several metaphors. The goal here is to think
about how your program is handled by the JS engine in ways that more closely
align with how the JS engine actually works.

Marbles, and Buckets, and Bubbles... Oh
My!

One metaphor I've found effective in understanding scope is sorting colored
marbles into buckets of their matching color.

Imagine you come across a pile of marbles, and notice that all the marbles are
colored red, blue, or green. Let's sort all the marbles, dropping the red ones into a
red bucket, green into a green bucket, and blue into a blue bucket. After sorting,
when you later need a green marble, you already know the green bucket is where
to go to get it.

In this metaphor, the marbles are the variables in our program. The buckets are
scopes (functions and blocks), which we just conceptually assign individual colors
for our discussion purposes. The color of each marble is thus determined by
which color scope we find the marble originally created in.

Let's annotate the running program example from Chapter 1 with scope color
labels:

// outer/global scope: RED

var students = [
{ id: , name: "Kyle" },

{ id: , name: "Suzy" },
{ id: , name: "Frank" },
{ id: 6, name: "Sarah" }

1;

function getStudentName() {
// function scope: BLUE

for (let student of students) {
// loop scope: GREEN

if (student.id == studentID) {
return student.name;

var nextStudent = getStudentName(73);
. log(nextStudent); // Suzy

We've designated three scope colors with code comments: RED (outermost
global scope), BLUE (scope of function getStudentName(..)), and GREEN (scope
of/inside the for loop). But it still may be difficult to recognize the boundaries of
these scope buckets when looking at a code listing.

Figure 2 helps visualize the boundaries of the scopes by drawing colored bubbles
(aka, buckets) around each:

\

1| var students = [“
2 { id: 14, name: "Kyle" }, o
3 { id: 73, name: "Suzy" },
4 { id: 112, name: "Frank" },
5 { id: 6, name: "Sarah" }
6 13
7
8 | function getStudentName(Ksmm {
9 - for (('l.et student‘of [students) { . h
10 if (student.id --\studentID) {
11 return student.name; e
12 } |
13 }
.)
14 | }
15
16 | var nextStudent = getStudentName(73);
17
18 | console.log(nextStudent);
19 | // "Suzy"
Fig. 2: Colored Scope Bubbles
1. Bubble 1 (RED) encompasses the global scope, which holds three
identifiers/variables: students (line 1), getStudentName (line 8), and
nextStudent (line 16).
2. Bubble 2 (BLUE) encompasses the scope of the function
getStudentName(..) (line 8), which holds just one identifier/variable: the

parameter studentID (line 8).

3. Bubble 3 (GREEN) encompasses the scope of the for -loop (line 9), which
holds just one identifier/variable: student (line 9).

NOTE:

Technically, the parameter studentID is not exactly in the BLUE(2) scope.
We'll unwind that confusion in "Implied Scopes" in Appendix A. For now, it's
close enough to label studentiD a BLUE(2) marble.

Scope bubbles are determined during compilation based on where the
functions/blocks of scope are written, the nesting inside each other, and so on.
Each scope bubble is entirely contained within its parent scope bubble—a scope
is never partially in two different outer scopes.

Each marble (variable/identifier) is colored based on which bubble (bucket) it's
declared in, not the color of the scope it may be accessed from (e.g., students
on line 9 and studentId on line 10).

NOTE:

Remember we asserted in Chapter 1 that id , name , and 1log are all
properties, not variables; in other words, they're not marbles in buckets, so
they don't get colored based on any the rules we're discussing in this book.
To understand how such property accesses are handled, see the third book
in the series, Objects & Classes.

As the JS engine processes a program (during compilation), and finds a
declaration for a variable, it essentially asks, "Which color scope (bubble or
bucket) am | currently in?" The variable is designated as that same color,
meaning it belongs to that bucket/bubble.

The GREEN(3) bucket is wholly nested inside of the BLUE(2) bucket, and
similarly the BLUE(2) bucket is wholly nested inside the RED(1) bucket. Scopes
can nest inside each other as shown, to any depth of nesting as your program
needs.

References (non-declarations) to variables/identifiers are allowed if there's a
matching declaration either in the current scope, or any scope above/outside the
current scope, but not with declarations from lower/nested scopes.

An expression in the RED(1) bucket only has access to RED(1) marbles, not
BLUE(2) or GREEN(3). An expression in the BLUE(2) bucket can reference either
BLUE(2) or RED(1) marbles, not GREEN(3). And an expression in the GREEN(3)
bucket has access to RED(1), BLUE(2), and GREEN(3) marbles.

We can conceptualize the process of determining these non-declaration marble

colors during runtime as a lookup. Since the students variable reference in the
for -loop statement on line 9 is not a declaration, it has no color. So we ask the

current BLUE(2) scope bucket if it has a marble matching that name. Since it

doesn't, the lookup continues with the next outer/containing scope: RED(1). The
RED(1) bucket has a marble of the name students , so the loop-statement's
students variable reference is determined to be a RED(1) marble.

The if (student.id == studentID) statement on line 10 is similarly determined to
reference a GREEN(3) marble named student and a BLUE(2) marble
studentID .

NOTE:

The JS engine doesn't generally determine these marble colors during
runtime; the "lookup" here is a rhetorical device to help you understand the
concepts. During compilation, most or all variable references will match
already-known scope buckets, so their color is already determined, and
stored with each marble reference to avoid unnecessary lookups as the
program runs. More on this nuance in Chapter 3.

The key take-aways from marbles & buckets (and bubbles!):

o Variables are declared in specific scopes, which can be thought of as colored
marbles from matching-color buckets.

e Any variable reference that appears in the scope where it was declared, or
appears in any deeper nested scopes, will be labeled a marble of that same
color—unless an intervening scope "shadows" the variable declaration; see
"Shadowing" in Chapter 3.

¢ The determination of colored buckets, and the marbles they contain, happens
during compilation. This information is used for variable (marble color)
"lookups" during code execution.

A Conversation Among Friends

Another useful metaphor for the process of analyzing variables and the scopes
they come from is to imagine various conversations that occur inside the engine
as code is processed and then executed. We can "listen in" on these
conversations to get a better conceptual foundation for how scopes work.

Let's now meet the members of the JS engine that will have conversations as
they process our program:

e Engine: responsible for start-to-finish compilation and execution of our
JavaScript program.

o Compiler. one of Engine's friends; handles all the dirty work of parsing and
code-generation (see previous section).

e Scope Manager: another friend of Engine; collects and maintains a lookup list
of all the declared variables/identifiers, and enforces a set of rules as to how
these are accessible to currently executing code.

For you to fully understand how JavaScript works, you need to begin to think like
Engine (and friends) think, ask the questions they ask, and answer their questions
likewise.

To explore these conversations, recall again our running program example:

var students = [

{ id: , name: "Kyle" },
{ id: , name: "Suzy" },
{ id: , name: "Frank" },
{ id: 6, name: "Sarah" }
1;
function getStudentName() {

for (let student of students) {
if (student.id == studentID) {
return student.name;
}
+

var nextStudent = getStudentName(73);

. log(nextStudent) ;

Let's examine how JS is going to process that program, specifically starting with
the first statement. The array and its contents are just basic JS value literals (and
thus unaffected by any scoping concerns), so our focus here will be on the var
students = [.. 1 declaration and initialization-assignment parts.

We typically think of that as a single statement, but that's not how our friend
Engine sees it. In fact, JS treats these as two distinct operations, one which
Compiler will handle during compilation, and the other which Engine will handle
during execution.

The first thing Compiler will do with this program is perform lexing to break it down
into tokens, which it will then parse into a tree (AST).

Once Compiler gets to code generation, there's more detail to consider than may
be obvious. A reasonable assumption would be that Compiler will produce code
for the first statement such as: "Allocate memory for a variable, label it students ,
then stick a reference to the array into that variable." But that's not the whole
story.

Here's the steps Compiler will follow to handle that statement:

1. Encountering var students , Compiler will ask Scope Manager to see if a
variable named students already exists for that particular scope bucket. If
so, Compiler would ignore this declaration and move on. Otherwise, Compiler
will produce code that (at execution time) asks Scope Manager to create a
new variable called students in that scope bucket.

2. Compiler then produces code for Engine to later execute, to handle the
students = [1 assignment. The code Engine runs will first ask Scope
Manager if there is a variable called students accessible in the current
scope bucket. If not, Engine keeps looking elsewhere (see "Nested Scope”
below). Once Engine finds a variable, it assigns the reference of the [..]
array to it.

In conversational form, the first phase of compilation for the program might play
out between Compiler and Scope Manager like this:

Chapter 1: What Is JavaScript?

98

Compiler: Hey, Scope Manager (of the global scope), | found a formal
declaration for an identifier called students , ever heard of it?

(Global) Scope Manager. Nope, never heard of it, so | just created it for
you.

Compiler: Hey, Scope Manager, | found a formal declaration for an
identifier called getStudentName , ever heard of it?

(Global) Scope Manager. Nope, but | just created it for you.

Compiler. Hey, Scope Manager, getStudentName points to a function, so
we need a new scope bucket.

(Function) Scope Manager: Got it, here's the scope bucket.

Compiler: Hey, Scope Manager (of the function), | found a formal
parameter declaration for studentID , ever heard of it?

(Function) Scope Manager: Nope, but now it's created in this scope.

Compiler. Hey, Scope Manager (of the function), | found a for -loop that
will need its own scope bucket.

The conversation is a question-and-answer exchange, where Compiler asks the
current Scope Manager if an encountered identifier declaration has already been
encountered. If "no," Scope Manager creates that variable in that scope. If the
answer is "yes," then it's effectively skipped over since there's nothing more for
that Scope Manager to do.

Compiler also signals when it runs across functions or block scopes, so that a
new scope bucket and Scope Manager can be instantiated.

Later, when it comes to execution of the program, the conversation will shift to
Engine and Scope Manager, and might play out like this:

Chapter 1: What Is JavaScript?

99

Engine: Hey, Scope Manager (of the global scope), before we begin, can
you look up the identifier getStudentName so | can assign this function to it?

(Global) Scope Manager: Yep, here's the variable.

Engine: Hey, Scope Manager, | found a target reference for students ,
ever heard of it?

(Global) Scope Manager: Yes, it was formally declared for this scope, so
here it is.

Engine: Thanks, I'm initializing students to undefined , so it's ready to
use.

Hey, Scope Manager (of the global scope), | found a target reference for
nextStudent , ever heard of it?

(Global) Scope Manager: Yes, it was formally declared for this scope, so
here it is.

Engine: Thanks, I'm initializing nextStudent to undefined , So it's ready to
use.

Hey, Scope Manager (of the global scope), | found a source reference for
getStudentName , ever heard of it?

(Global) Scope Manager: Yes, it was formally declared for this scope.
Here it is.

Engine: Great, the value in getStudentName is a function, so I'm going to
execute it.

Engine: Hey, Scope Manager, now we need to instantiate the function's
scope.

This conversation is another question-and-answer exchange, where Engine first
asks the current Scope Manager to look up the hoisted getStudentName identifier,
so as to associate the function with it. Engine then proceeds to ask Scope
Manager about the target reference for students , and so on.

To review and summarize how a statement like var students = [.. 1 is
processed, in two distinct steps:

1. Compiler sets up the declaration of the scope variable (since it wasn't
previously declared in the current scope).

2. While Engine is executing, to process the assignment part of the statement,
Engine asks Scope Manager to look up the variable, initializes it to
undefined so it's ready to use, and then assigns the array value to it.

Nested Scope

When it comes time to execute the getStudentName() function, Engine asks for a
Scope Manager instance for that function's scope, and it will then proceed to look
up the parameter (studentID) to assign the 73 argument value to, and so on.

The function scope for getStudentName(..) is nested inside the global scope. The
block scope of the for -loop is similarly nested inside that function scope.
Scopes can be lexically nested to any arbitrary depth as the program defines.

Each scope gets its own Scope Manager instance each time that scope is
executed (one or more times). Each scope automatically has all its identifiers
registered at the start of the scope being executed (this is called "variable
hoisting"; see Chapter 5).

At the beginning of a scope, if any identifier came from a function declaration,
that variable is automatically initialized to its associated function reference. And if
any identifier came from a var declaration (as opposed to 1let / const), that
variable is automatically initialized to undefined so that it can be used; otherwise,
the variable remains uninitialized (aka, in its "TDZ," see Chapter 5) and cannot be
used until its full declaration-and-initialization are executed.

Inthe for (let student of students) { statement, students is a source
reference that must be looked up. But how will that lookup be handled, since the
scope of the function will not find such an identifier?

To explain, let's imagine that bit of conversation playing out like this:

Engine: Hey, Scope Manager (for the function), | have a source reference

for students , ever heard of it?

(Function) Scope Manager: Nope, never heard of it. Try the next outer

scope.

Engine: Hey, Scope Manager (for the global scope), | have a source

reference for students , ever heard of it?

(Global) Scope Manager: Yep, it was formally declared, here it is.

One of the key aspects of lexical scope is that any time an identifier reference
cannot be found in the current scope, the next outer scope in the nesting is
consulted; that process is repeated until an answer is found or there are no more
scopes to consult.

Lookup Failures

When Engine exhausts all lexically available scopes (moving outward) and still
cannot resolve the lookup of an identifier, an error condition then exists. However,
depending on the mode of the program (strict-mode or not) and the role of the
variable (i.e., target vs. source; see Chapter 1), this error condition will be handled
differently.

Undefined Mess

If the variable is a source, an unresolved identifier lookup is considered an
undeclared (unknown, missing) variable, which always results in a

ReferenceError being thrown. Also, if the variable is a target, and the code at that
moment is running in strict-mode, the variable is considered undeclared and
similarly throws a ReferenceError .

The error message for an undeclared variable condition, in most JS
environments, will look like, "Reference Error: XYZ is not defined." The phrase
"not defined" seems almost identical to the word "undefined," as far as the English
language goes. But these two are very different in JS, and this error message
unfortunately creates a persistent confusion.

"Not defined" really means "not declared"—or, rather, "undeclared," as in a
variable that has no matching formal declaration in any lexically available scope.
By contrast, "undefined" really means a variable was found (declared), but the
variable otherwise has no other value in it at the moment, so it defaults to the

undefined value.
To perpetuate the confusion even further, JS's typeof operator returns the string

"undefined" for variable references in either state:

var studentName;
typeof studentName;

typeof doesntExist;

These two variable references are in very different conditions, but JS sure does
muddy the waters. The terminology mess is confusing and terribly unfortunate.
Unfortunately, JS developers just have to pay close attention to not mix up which
kind of "undefined" they're dealing with!

Global... What!?

If the variable is a target and strict-mode is not in effect, a confusing and
surprising legacy behavior kicks in. The troublesome outcome is that the global
scope's Scope Manager will just create an accidental global variable to fulfill
that target assignment!

Consider:

function getStudentName() {

nextStudent = "Suzy";
+

getStudentName() ;

. log(nextStudent) ;

Here's how that conversation will proceed:

Engine: Hey, Scope Manager (for the function), | have a farget reference
for nextStudent , ever heard of it?

(Function) Scope Manager. Nope, never heard of it. Try the next outer
scope.

Engine: Hey, Scope Manager (for the global scope), | have a target
reference for nextStudent , ever heard of it?

(Global) Scope Manager: Nope, but since we're in non-strict-mode, |
helped you out and just created a global variable for you, here it is!

Yuck.

This sort of accident (almost certain to lead to bugs eventually) is a great example
of the beneficial protections offered by strict-mode, and why it's such a bad idea
not to be using strict-mode. In strict-mode, the Global Scope Manager would
instead have responded:

(Global) Scope Manager: Nope, never heard of it. Sorry, I've got to throw a

ReferenceError .

Assigning to a never-declared variable is an error, so it's right that we would
receive a ReferenceError here.

Never rely on accidental global variables. Always use strict-mode, and always
formally declare your variables. You'll then get a helpful ReferenceError if you
ever mistakenly try to assign to a not-declared variable.

Building On Metaphors

To visualize nested scope resolution, | prefer yet another metaphor, an office
building, as in Figure 3:

Global Scope

_>

Lexical Scope(s)

| Current Scope

Fig. 3: Scope "Building”

The building represents our program's nested scope collection. The first floor of
the building represents the currently executing scope. The top level of the building
is the global scope.

You resolve a target or source variable reference by first looking on the current
floor, and if you don't find it, taking the elevator to the next floor (i.e., an outer
scope), looking there, then the next, and so on. Once you get to the top floor (the
global scope), you either find what you're looking for, or you don't. But you have to
stop regardless.

Continue the Conversation

By this point, you should be developing richer mental models for what scope is
and how the JS engine determines and uses it from your code.

Before continuing, go find some code in one of your projects and run through
these conversations. Seriously, actually speak out loud. Find a friend and practice
each role with them. If either of you find yourself confused or tripped up, spend
more time reviewing this material.

As we move (up) to the next (outer) chapter, we'll explore how the lexical scopes
of a program are connected in a chain.

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 3: The Scope Chain

Chapters 1 and 2 laid down a concrete definition of lexical scope (and its parts)
and illustrated helpful metaphors for its conceptual foundation. Before proceeding
with this chapter, find someone else to explain (written or aloud), in your own
words, what lexical scope is and why it's useful to understand.

That seems like a step you might skip, but I've found it really does help to take the
time to reformulate these ideas as explanations to others. That helps our brains
digest what we're learning!

Now it's time to dig into the nuts and bolts, so expect that things will get a lot more
detailed from here forward. Stick with it, though, because these discussions really
hammer home just how much we all don't know about scope, yet. Make sure to
take your time with the text and all the code snippets provided.

To refresh the context of our running example, let's recall the color-coded
illustration of the nested scope bubbles, from Chapter 2, Figure 2:

\

/Jl var students = [“
2 { id: 14, name: "Kyle" }, o
3 { id: 73, name: "Suzy" },

4 { id: 112, name: "Frank" },

5 { id: 6, name: "Sarah" }

6 1;

7

8 | function getStudentName(Ksmﬂ) {
9 7 for (('-l.et student\" of |:$tudent$) { 7

10 ' if (student.id == (studentID) { |

11 return student.name; e

12 } |

13 }

A /

14 }

15

16 | var nextStudent = getStudentName(73);

17

18 | console.log(nextStudent);

19 | // "Suzy"

Fig. 2 (Ch. 2): Colored Scope Bubbles

The connections between scopes that are nested within other scopes is called the
scope chain, which determines the path along which variables can be accessed.
The chain is directed, meaning the lookup moves upward/outward only.

"Lookup" Is (Mostly) Conceptual

In Figure 2, notice the color of the students variable reference in the for -loop.
How exactly did we determine that it's a RED(1) marble?

In Chapter 2, we described the runtime access of a variable as a "lookup," where
the Engine has to start by asking the current scope's Scope Manager if it knows
about an identifier/variable, and proceeding upward/outward back through the
chain of nested scopes (toward the global scope) until found, if ever. The lookup
stops as soon as the first matching named declaration in a scope bucket is found.

The lookup process thus determined that students is a RED(1) marble, because
we had not yet found a matching variable name as we traversed the scope chain,
until we arrived at the final RED(1) global scope.

Similarly, studentiD inthe if -statementis determined to be a BLUE(2) marble.

This suggestion of a runtime lookup process works well for conceptual
understanding, but it's not actually how things usually work in practice.

The color of a marble's bucket (aka, meta information of what scope a variable
originates from) is usually determined during the initial compilation processing.
Because lexical scope is pretty much finalized at that point, a marble's color will
not change based on anything that can happen later during runtime.

Since the marble's color is known from compilation, and it's immutable, this
information would likely be stored with (or at least accessible from) each
variable's entry in the AST; that information is then used explicitly by the
executable instructions that constitute the program's runtime.

In other words, Engine (from Chapter 2) doesn't need to lookup through a bunch
of scopes to figure out which scope bucket a variable comes from. That
information is already known! Avoiding the need for a runtime lookup is a key
optimization benefit of lexical scope. The runtime operates more performantly
without spending time on all these lookups.

But | said "...usually determined..." just a moment ago, with respect to figuring out
a marble's color during compilation. So in what case would it ever not be known
during compilation?

Consider a reference to a variable that isn't declared in any lexically available
scopes in the current file—see Get Started, Chapter 1, which asserts that each
file is its own separate program from the perspective of JS compilation. If no
declaration is found, that's not necessarily an error. Another file (program) in the
runtime may indeed declare that variable in the shared global scope.

So the ultimate determination of whether the variable was ever appropriately
declared in some accessible bucket may need to be deferred to the runtime.

Any reference to a variable that's initially undeclared is left as an uncolored
marble during that file's compilation; this color cannot be determined until other
relevant file(s) have been compiled and the application runtime commences. That
deferred lookup will eventually resolve the color to whichever scope the variable is
found in (likely the global scope).

However, this lookup would only be needed once per variable at most, since
nothing else during runtime could later change that marble's color.

The "Lookup Failures" section in Chapter 2 covers what happens if a marble is
ultimately still uncolored at the moment its reference is runtime executed.

Shadowing

"Shadowing" might sound mysterious and a little bit sketchy. But don't worry, it's
completely legit!

Our running example for these chapters uses different variable names across the
scope boundaries. Since they all have unique names, in a way it wouldn't matter if
all of them were just stored in one bucket (like RED(1)).

Where having different lexical scope buckets starts to matter more is when you
have two or more variables, each in different scopes, with the same lexical
names. A single scope cannot have two or more variables with the same name;
such multiple references would be assumed as just one variable.

So if you need to maintain two or more variables of the same name, you must use
separate (often nested) scopes. And in that case, it's very relevant how the
different scope buckets are laid out.

Consider:
var studentName = "Suzy";
function printStudent() {
studentName = studentName.toUpperCase();
. log(studentName) ;
+

printStudent("Frank");

printStudent(studentName);

. log(studentName) ;

TIP:

Before you move on, take some time to analyze this code using the various
techniques/metaphors we've covered in the book. In particular, make sure to
identify the marble/bubble colors in this snippet. It's good practice!

The studentName variable on line 1 (the var studentName = .. statement)
creates a RED(1) marble. The same named variable is declared as a BLUE(2)
marble on line 3, the parameter in the printStudent(..) function definition.

What color marble will studentName be inthe studentName =
studentName.toUpperCase() assignment statement and the

console. log(studentName) statement? All three studentName references will be
BLUE(2).

With the conceptual notion of the "lookup," we asserted that it starts with the

current scope and works its way outward/upward, stopping as soon as a matching

variable is found. The BLUE(2) studentName is found right away. The RED(1)
studentName iS never even considered.

This is a key aspect of lexical scope behavior, called shadowing. The BLUE(2)

studentName variable (parameter) shadows the RED(1) studentName . So, the
parameter is shadowing the (shadowed) global variable. Repeat that sentence to
yourself a few times to make sure you have the terminology straight!

That's why the re-assignment of studentName affects only the inner (parameter)
variable: the BLUE(2) studentName , not the global RED(1) studentName .

When you choose to shadow a variable from an outer scope, one direct impact is

that from that scope inward/downward (through any nested scopes) it's now
impossible for any marble to be colored as the shadowed variable—(RED(1), in

this case). In other words, any studentName identifier reference will correspond to

that parameter variable, never the global studentName variable. It's lexically
impossible to reference the global studentName anywhere inside of the
printStudent(..) function (or from any nested scopes).

Global Unshadowing Trick

Please beware: leveraging the technique I'm about to describe is not very good
practice, as it's limited in utility, confusing for readers of your code, and likely to
invite bugs to your program. I'm covering it only because you may run across this
behavior in existing programs, and understanding what's happening is critical to
not getting tripped up.

It is possible to access a global variable from a scope where that variable has
been shadowed, but not through a typical lexical identifier reference.

In the global scope (RED(1)), var declarations and function declarations also
expose themselves as properties (of the same name as the identifier) on the
global object—essentially an object representation of the global scope. If you've
written JS for a browser environment, you probably recognize the global object as
window . That's not entirely accurate, but it's good enough for our discussion. In
the next chapter, we'll explore the global scope/object topic more.

Consider this program, specifically executed as a standalone .js file in a browser
environment:

var studentName = "Suzy";

function printStudent() {
. log(studentName) ;
. log(.studentName) ;
}

printStudent("Frank");

Notice the window.studentName reference? This expression is accessing the
global variable studentName as a property on window (which we're pretending for
now is synonymous with the global object). That's the only way to access a
shadowed variable from inside a scope where the shadowing variable is present.

The window.studentName is a mirror of the global studentName variable, not a
separate snapshot copy. Changes to one are still seen from the other, in either
direction. You can think of window.studentName as a getter/setter that accesses
the actual studentName variable. As a matter of fact, you can even add a variable
to the global scope by creating/setting a property on the global object.

WARNING:

Remember: just because you can doesn't mean you should. Don't shadow a
global variable that you need to access, and conversely, avoid using this
trick to access a global variable that you've shadowed. And definitely don't
confuse readers of your code by creating global variables as window
properties instead of with formal declarations!

This little "trick" only works for accessing a global scope variable (not a shadowed
variable from a nested scope), and even then, only one that was declared with

var Or function .

Other forms of global scope declarations do not create mirrored global object
properties:

var one = 1;

let notOne = 2;
const notTwo = 3;
class notThree {}

. log(.one);

. log(.notOne);

. log(.notTwo) ;

. log(.notThree);

Variables (no matter how they're declared!) that exist in any other scope than the
global scope are completely inaccessible from a scope where they've been
shadowed:

var special = H

function lookingFor() {

function keepLooking() {
var special = H
.log(special);

. log(.special);
}
keepLooking();
+
lookingFor();

The global RED(1) special is shadowed by the BLUE(2) special (parameter),
and the BLUE(2) special is itself shadowed by the GREEN(3) special inside
keepLooking() . We can still access the RED(1) special using the indirect
reference window.special . But there's no way for keepLooking() to access the
BLUE(2) special that holds the number 112358132134 .

Copying Is Not Accessing

I've been asked the following "But what about...?" question dozens of times.
Consider:

var special = B

function lookingFor() {
var another = {
special: special

+;

function keepLooking() {
var special = ;
. log(special);
. log(another.special);

. log(.special);
+
keepLooking();
+
lookingFor();

Oh! So does this another object technique disprove my claim that the special
parameter is "completely inaccessible" from inside keepLooking() ? No, the claim
is still correct.

special: special is copying the value of the special parameter variable into
another container (a property of the same name). Of course, if you put a value in
another container, shadowing no longer applies (unless another was shadowed,
too!). But that doesn't mean we're accessing the parameter special ; it means
we're accessing the copy of the value it had at that moment, by way of another
container (object property). We cannot reassign the BLUE(2) special parameter
to a different value from inside keepLooking() .

Another "But...!?" you may be about to raise: what if I'd used objects or arrays as
the values instead of the numbers (112358132134 , etc.)? Would us having
references to objects instead of copies of primitive values "fix" the inaccessibility?

No. Mutating the contents of the object value via a reference copy is not the same
thing as lexically accessing the variable itself. We still can't reassign the BLUE(2)
special parameter.

lllegal Shadowing

Not all combinations of declaration shadowing are allowed. 1et can shadow
var , but var cannot shadow 1et :

function something() {

var special = "JavaScript";

{
let special = 42; // totally fine shadowing
[l

+

function another() {

/] ..
{
let special = "JavaScript";
{
var special = "JavaScript";
// """ Syntax Error
// ..
}
}

Notice in the another() function, the inner var special declaration is attempting
to declare a function-wide special , which in and of itself is fine (as shown by the
something() function).

The syntax error description in this case indicates that special has already been
defined, but that error message is a little misleading—again, no such error
happens in something() , as shadowing is generally allowed just fine.

The real reason it's raised as a SyntaxtError is because the var is basically
trying to "cross the boundary" of (or hop over) the 1let declaration of the same
name, which is not allowed.

That boundary-crossing prohibition effectively stops at each function boundary, so
this variant raises no exception:

function another() {

/] ..
{
let special = "JavaScript";
ajax("https://some.url", function callback(){
// totally fine shadowing
var special = "JavaScript";
/] ..
1)
+

Summary: let (in aninner scope) can always shadow an outer scope's var .
var (in an inner scope) can only shadow an outer scope's 1let if there is a
function boundary in between.

Function Name Scope

As you've seen by now, a function declaration looks like this:

function askQuestion() {

S

And as discussed in Chapters 1 and 2, such a function declaration will create
an identifier in the enclosing scope (in this case, the global scope) named

askQuestion .

What about this program?

var askQuestion = function(){

+;

The same is true for the variable askquestion being created. But since it's a
function expression—a function definition used as value instead of a
standalone declaration—the function itself will not "hoist" (see Chapter 5).

One major difference between function declarations and function expressions
is what happens to the name identifier of the function. Consider a named
function expression:

var askQuestion = function ofTheTeacher(){

i

We know askQuestion ends up in the outer scope. But what about the

ofTheTeacher identifier? For formal function declarations, the name identifier
ends up in the outer/enclosing scope, so it may be reasonable to assume that's
the case here. But ofTheTeacher is declared as an identifier inside the function
itself:

var askQuestion = function ofTheTeacher() {
.log(ofTheTeacher);
18

askQuestion();

.log(ofTheTeacher);

NOTE:

Actually, ofTheTeacher is not exactly in the scope of the function. Appendix
A, "Implied Scopes" will explain further.

Not only is ofTheTeacher declared inside the function rather than outside, but it's
also defined as read-only:

var askQuestion = function ofTheTeacher() {
ofTheTeacher = ;

3

askQuestion();

Because we used strict-mode, the assignment failure is reported as a TypeError ;
in non-strict-mode, such an assignment fails silently with no exception.

What about when a function expression has no name identifier?

var askQuestion = function(){

+;

A function expression with a name identifier is referred to as a "named function
expression," but one without a name identifier is referred to as an "anonymous
function expression." Anonymous function expressions clearly have no name
identifier that affects either scope.

NOTE:

We'll discuss named vs. anonymous function expressions in much more
detail, including what factors affect the decision to use one or the other, in
Appendix A.

Arrow Functions

ES6 added an additional function expression form to the language, called
"arrow functions":

var askQuestion = = {

+;

The => arrow function doesn't require the word function to define it. Also, the
(..) around the parameter list is optional in some simple cases. Likewise, the
{ .. } around the function body is optional in some cases. And when the { ..

} are omitted, a return value is sent out without using a return keyword.

NOTE:

The attractiveness of == arrow functions is often sold as "shorter syntax,"
and that's claimed to equate to objectively more readable code. This claim is
dubious at best, and | believe outright misguided. We'll dig into the
"readability” of various function forms in Appendix A.

Arrow functions are lexically anonymous, meaning they have no directly related
identifier that references the function. The assignment to askQuestion creates an
inferred name of "askQuestion", but that's not the same thing as being non-

anonymous:

var askQuestion = = {
+

askQuestion.name;

Arrow functions achieve their syntactic brevity at the expense of having to
mentally juggle a bunch of variations for different forms/conditions. Just a few, for
example:

() => 42;
=> id.toUpperCase();
() = ({ id, name });

() => {
return argslargs.length - 1];
g

The real reason | bring up arrow functions is because of the common but incorrect
claim that arrow functions somehow behave differently with respect to lexical
scope from standard function functions.

This is incorrect.

Other than being anonymous (and having no declarative form), => arrow
functions have the same lexical scope rules as function functions do. An arrow
function, with or without { .. } around its body, still creates a separate, inner
nested bucket of scope. Variable declarations inside this nested scope bucket
behave the same as ina function scope.

Backing Out

When a function (declaration or expression) is defined, a new scope is created.
The positioning of scopes nested inside one another creates a natural scope
hierarchy throughout the program, called the scope chain. The scope chain
controls variable access, directionally oriented upward and outward.

Each new scope offers a clean slate, a space to hold its own set of variables.
When a variable name is repeated at different levels of the scope chain,
shadowing occurs, which prevents access to the outer variable from that point
inward.

As we step back out from these finer details, the next chapter shifts focus to the
primary scope all JS programs include: the global scope.

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 4: Around the Global Scope

Chapter 3 mentioned the "global scope" several times, but you may still be
wondering why a program's outermost scope is all that important in modern JS.
The vast majority of work is now done inside of functions and modules rather than
globally.

Is it good enough to just assert, "Avoid using the global scope," and be done with
it?

The global scope of a JS program is a rich topic, with much more utility and
nuance than you would likely assume. This chapter first explores how the global
scope is (still) useful and relevant to writing JS programs today, then looks at
differences in where and how to access the global scope in different JS
environments.

Fully understanding the global scope is critical in your mastery of using lexical
scope to structure your programs.

Why Global Scope?

It's likely no surprise to readers that most applications are composed of multiple
(sometimes many!) individual JS files. So how exactly do all those separate files
get stitched together in a single runtime context by the JS engine?

With respect to browser-executed applications, there are three main ways.

First, if you're directly using ES modules (not transpiling them into some other
module-bundle format), these files are loaded individually by the JS environment.
Each module then import s references to whichever other modules it needs to
access. The separate module files cooperate with each other exclusively through
these shared imports, without needing any shared outer scope.

Second, if you're using a bundler in your build process, all the files are typically
concatenated together before delivery to the browser and JS engine, which then
only processes one big file. Even with all the pieces of the application co-located
in a single file, some mechanism is necessary for each piece to register a name to
be referred to by other pieces, as well as some facility for that access to occur.

In some build setups, the entire contents of the file are wrapped in a single
enclosing scope, such as a wrapper function, universal module (UMD—see
Appendix A), etc. Each piece can register itself for access from other pieces by
way of local variables in that shared scope. For example:

(function wrappingOuterScope(){
var moduleOne = (function one(){

HO;

var moduleTwo = (function two(){

function callModuleOne() {
moduleOne.someMethod() ;

As shown, the moduleone and moduleTwo local variables inside the
wrappingOuterScope() function scope are declared so that these modules can
access each other for their cooperation.

While the scope of wrappingOuterScope() is a function and not the full
environment global scope, it does act as a sort of "application-wide scope," a
bucket where all the top-level identifiers can be stored, though not in the real
global scope. It's kind of like a stand-in for the global scope in that respect.

And finally, the third way: whether a bundler tool is used for an application, or
whether the (non-ES module) files are simply loaded in the browser individually
(via <script> tags or other dynamic JS resource loading), if there is no single
surrounding scope encompassing all these pieces, the global scope is the only
way for them to cooperate with each other:

A bundled file of this sort often looks something like this:

var moduleOne = (function one(){
HO;

var moduleTwo = (function two(){

function callModuleOne() {
moduleOne. someMethod () ;

I

HO;

Here, since there is no surrounding function scope, these moduleone and
moduleTwo declarations are simply dropped into the global scope. This is
effectively the same as if the files hadn't been concatenated, but loaded
separately:

module1.js:

var moduleOne = (function one(){

HO;

module2.js:

var moduleTwo = (function two(){

function callModuleOne() {
moduleOne. someMethod() ;

3

HO;

If these files are loaded separately as normal standalone .js files in a browser
environment, each top-level variable declaration will end up as a global variable,
since the global scope is the only shared resource between these two separate
files—they're independent programs, from the perspective of the JS engine.

In addition to (potentially) accounting for where an application's code resides
during runtime, and how each piece is able to access the other pieces to
cooperate, the global scope is also where:

e JS exposes its built-ins:

o primitives: undefined , null, Infinity , NaN
o natives: Date() , Object() , String() , etc.
o global functions: eval() , parseInt() , etc.
o namespaces: Math , Atomics , JSON
o friends of JS: Intl, WebAssembly
e The environment hosting the JS engine exposes its own built-ins:

o console (and its methods)

o the DOM (window , document , etc)

o timers (setTimeout(..) , etc)

o web platform APIs: navigator , history , geolocation, WebRTC, etc.

These are just some of the many globals your programs will interact with.

NOTE:

Node also exposes several elements "globally," but they're technically not in
the global scope: require() dirname , module , URL , and so on.

| J—

Most developers agree that the global scope shouldn't just be a dumping ground
for every variable in your application. That's a mess of bugs just waiting to
happen. But it's also undeniable that the global scope is an important glue for
practically every JS application.

Where Exactly is this Global Scope?

It might seem obvious that the global scope is located in the outermost portion of
a file; that is, not inside any function or other block. But it's not quite as simple as
that.

Different JS environments handle the scopes of your programs, especially the
global scope, differently. It's quite common for JS developers to harbor
misconceptions without even realizing it.

Browser "Window"

With respect to treatment of the global scope, the most pure environment JS can
be run in is as a standalone js file loaded in a web page environment in a
browser. | don't mean "pure" as in nothing automatically added—Ilots may be
added!—but rather in terms of minimal intrusion on the code or interference with
its expected global scope behavior.

Consider this .js file:

var studentName = "Kyle";

function hello() {
.log('Hello, ${ studentName }!');
+

hello();

This code may be loaded in a web page environment using an inline <script>
tag, a <script src=..> scripttag in the markup, or even a dynamically created
<script> DOM element. In all three cases, the studentName and hello
identifiers are declared in the global scope.

That means if you access the global object (commonly, window in the browser),
you'll find properties of those same names there:
var studentName = "Kyle";
function hello() {
.log("Hello, ${ .studentName }!")

S

.hello();

That's the default behavior one would expect from a reading of the JS
specification: the outer scope is the global scope and studentName is legitimately
created as global variable.

That's what | mean by pure. But unfortunately, that won't always be true of all JS
environments you encounter, and that's often surprising to JS developers.

Globals Shadowing Globals

Recall the discussion of shadowing (and global unshadowing) from Chapter 3,
where one variable declaration can override and prevent access to a declaration
of the same name from an outer scope.

An unusual consequence of the difference between a global variable and a global
property of the same name is that, within just the global scope itself, a global
object property can be shadowed by a global variable:

.something = g

let something = "Kyle";

. log(something);

. log(.something);

The 1let declaration adds a something global variable but not a global object
property (see Chapter 3). The effect then is that the something lexical identifier
shadows the something global object property.

It's almost certainly a bad idea to create a divergence between the global object
and the global scope. Readers of your code will almost certainly be tripped up.

A simple way to avoid this gotcha with global declarations: always use var for
globals. Reserve 1let and const for block scopes (see "Scoping with Blocks" in
Chapter 6).

DOM Globals

| asserted that a browser-hosted JS environment has the most pure global scope
behavior we'll see. However, it's not entirely pure.

One surprising behavior in the global scope you may encounter with browser-
based JS applications: a DOM element with an id attribute automatically
creates a global variable that references it.

Consider this markup:

<ul id="my-todo-list">
<li id="first">Write a book

And the JS for that page could include:

first;

["my-todo-list"];

If the id value is a valid lexical name (like first), the lexical variable is
created. If not, the only way to access that global is through the global object

(window[..]1).

The auto-registration of all id -bearing DOM elements as global variables is an
old legacy browser behavior that nevertheless must remain because so many old
sites still rely on it. My advice is never to use these global variables, even though
they will always be silently created.

What's in a (Window) Name?
Another global scope oddity in browser-based JS:

var name = 42;

. log(name, typeof name);

window.name is a pre-defined "global" in a browser context; it's a property on the
global object, so it seems like a normal global variable (yet it's anything but
"normal").

We used var for our declaration, which does not shadow the pre-defined name
global property. That means, effectively, the var declaration is ignored, since
there's already a global scope object property of that name. As we discussed
earlier, had we used 1let name , we would have shadowed window.name with a
separate global name variable.

But the truly surprising behavior is that even though we assigned the number 42
to name (and thus window.name), when we then retrieve its value, it's a string

"42" 1'In this case, the weirdness is because name is actually a pre-defined
getter/setter on the window object, which insists on its value being a string value.
Yikes!

With the exception of some rare corner cases like DOM element ID's and
window.name , JS running as a standalone file in a browser page has some of the
most pure global scope behavior we will encounter.

Web Workers

Web Workers are a web platform extension on top of browser-JS behavior, which
allows a JS file to run in a completely separate thread (operating system wise)
from the thread that's running the main JS program.

Since these Web Worker programs run on a separate thread, they're restricted in
their communications with the main application thread, to avoid/limit race
conditions and other complications. Web Worker code does not have access to
the DOM, for example. Some web APIs are, however, made available to the
worker, such as navigator .

Since a Web Worker is treated as a wholly separate program, it does not share
the global scope with the main JS program. However, the browser's JS engine is
still running the code, so we can expect similar purity of its global scope behavior.
Since there is no DOM access, the window alias for the global scope doesn't
exist.

In a Web Worker, the global object reference is typically made using self :

var studentName = "Kyle";
let studentID = ;

function hello() {
.log(Hello, ${ self.studentName }!');
+

self.hello();

self.studentID;

Just as with main JS programs, var and function declarations create mirrored
properties on the global object (aka, self), where other declarations (let , etc)
do not.

So again, the global scope behavior we're seeing here is about as pure as it gets
for running JS programs; perhaps it's even more pure since there's no DOM to
muck things up!

Developer Tools Console/REPL

Recall from Chapter 1 in Get Started that Developer Tools don't create a
completely adherent JS environment. They do process JS code, but they also
lean in favor of the UX interaction being most friendly to developers (aka,
developer experience, or DX).

In some cases, favoring DX when typing in short JS snippets, over the normal
strict steps expected for processing a full JS program, produces observable
differences in code behavior between programs and tools. For example, certain
error conditions applicable to a JS program may be relaxed and not displayed
when the code is entered into a developer tool.

With respect to our discussions here about scope, such observable differences in
behavior may include:

e The behavior of the global scope
¢ Hoisting (see Chapter 5)

¢ Block-scoping declarators (let / const , see Chapter 6) when used in the
outermost scope

Although it might seem, while using the console/REPL, that statements entered in
the outermost scope are being processed in the real global scope, that's not quite
accurate. Such tools typically emulate the global scope position to an extent; it's
emulation, not strict adherence. These tool environments prioritize developer
convenience, which means that at times (such as with our current discussions
regarding scope), observed behavior may deviate from the JS specification.

The take-away is that Developer Tools, while optimized to be convenient and
useful for a variety of developer activities, are not suitable environments to
determine or verify explicit and nuanced behaviors of an actual JS program
context.

ES Modules (ESM)

ES6 introduced first-class support for the module pattern (covered in Chapter 8).
One of the most obvious impacts of using ESM is how it changes the behavior of
the observably top-level scope in a file.

Recall this code snippet from earlier (which we'll adjust to ESM format by using
the export keyword):

var studentName = "Kyle";

function hello() {
.log('Hello, ${ studentName }!');
+

hello();
export hello;

If that code is in a file that's loaded as an ES module, it will still run exactly the
same. However, the observable effects, from the overall application perspective,
will be different.

Despite being declared at the top level of the (module) file, in the outermost
obvious scope, studentName and hello are not global variables. Instead, they
are module-wide, or if you prefer, "module-global."

However, in a module there's no implicit "module-wide scope object" for these top-
level declarations to be added to as properties, as there is when declarations
appear in the top-level of non-module JS files. This is not to say that global
variables cannot exist or be accessed in such programs. It's just that global
variables don't get created by declaring variables in the top-level scope of a
module.

The module's top-level scope is descended from the global scope, almost as if the
entire contents of the module were wrapped in a function. Thus, all variables that
exist in the global scope (whether they're on the global object or not!) are
available as lexical identifiers from inside the module's scope.

ESM encourages a minimization of reliance on the global scope, where you
import whatever modules you may need for the current module to operate. As
such, you less often see usage of the global scope or its global object.

However, as noted earlier, there are still plenty of JS and web globals that you will
continue to access from the global scope, whether you realize it or not!

Node

One aspect of Node that often catches JS developers off-guard is that Node
treats every single .js file that it loads, including the main one you start the Node
process with, as a module (ES module or CommondJS module, see Chapter 8).
The practical effect is that the top level of your Node programs is never actually
the global scope, the way it is when loading a non-module file in the browser.

As of time of this writing, Node has recently added support for ES modules. But
additionally, Node has from its beginning supported a module format referred to
as "CommondS", which looks like this:

var studentName = "Kyle";

function hello() {
.log(Hello, ${ studentName }!");
+

hello();

.exports.hello = hello;

Before processing, Node effectively wraps such code in a function, so that the
var and function declarations are contained in that wrapping function's scope,
not treated as global variables.

Envision the preceding code as being seen by Node as this (illustrative, not
actual):

function Module() {
var studentName = "Kyle";

function hello() {
.log(Hello, ${ studentName }!');
+

hello();

.exports.hello = hello;

Node then essentially invokes the added Module(..) function to run your
module. You can clearly see here why studentName and hello identifiers are not
global, but rather declared in the module scope.

As noted earlier, Node defines a number of "globals" like require() , but they're
not actually identifiers in the global scope (nor properties of the global object).
They're injected in the scope of every module, essentially a bit like the parameters
listed in the Module(..) function declaration.

So how do you define actual global variables in Node? The only way to do so is to
add properties to another of Node's automatically provided "globals," which is
ironically called global . global is a reference to the real global scope object,
somewhat like using window in a browser JS environment.

Consider:

global.studentName = "Kyle";

function hello() {
.log("Hello, ${ studentName }!');
+

hello();
.exports.hello = hello;

Here we add studentName as a property on the global object, and then in the
console.log(..) statement we're able to access studentName as a normal global
variable.

Remember, the identifier global is not defined by JS; it's specifically defined by
Node.

Global This

Reviewing the JS environments we've looked at so far, a program may or may
not:

e Declare a global variable in the top-level scope with var or function
declarations—or let , const ,and class .

¢ Also add global variables declarations as properties of the global scope
objectif var or function are used for the declaration.

o Refer to the global scope object (for adding or retrieving global variables, as
properties) with window , self , or global .

I think it's fair to say that global scope access and behavior is more complicated
than most developers assume, as the preceding sections have illustrated. But the
complexity is never more obvious than in trying to nail down a universally
applicable reference to the global scope object.

Yet another "trick" for obtaining a reference to the global scope object looks like:

const theGlobalScopeObject =
(new ("return this"))();

NOTE:

A function can be dynamically constructed from code stored in a string value
with the Function() constructor, similarto eval(..) (see "Cheating:
Runtime Scope Modifications" in Chapter 1). Such a function will
automatically be run in non-strict-mode (for legacy reasons) when invoked
with the normal () function invocation as shown; its this will point at the
global object. See the third book in the series, Objects & Classes, for more
information on determining this bindings.

So, we have window , self , global , and this ugly new Function(..) trick.
That's a lot of different ways to try to get at this global object. Each has its pros
and cons.

Why not introduce yet another!?!?

As of ES2020, JS has finally defined a standardized reference to the global scope
object, called globalThis . So, subject to the recency of the JS engines your code
runs in, you can use globalThis in place of any of those other approaches.

We could even attempt to define a cross-environment polyfill that's safer across
pre- globalThis JS environments, such as:

const theGlobalScopeObject =
(typeof globalThis != "undefined") ? globalThis :
(typeof global != "undefined") ? global :
(typeof I= "undefined") ?
(typeof self != "undefined") ? self :
(new ("return this"))();

Phew! That's certainly not ideal, but it works if you find yourself needing a reliable
global scope reference.

(The proposed name globalThis was fairly controversial while the feature was
being added to JS. Specifically, | and many others felt the "this" reference in its
name was misleading, since the reason you reference this object is to access to
the global scope, never to access some sort of global/default this binding.
There were many other names considered, but for a variety of reasons ruled out.
Unfortunately, the name chosen ended up as a last resort. If you plan to interact
with the global scope object in your programs, to reduce confusion, | strongly
recommend choosing a better name, such as (the laughably long but accurate!)
theGlobalScopeObject used here.)

Globally Aware

The global scope is present and relevant in every JS program, even though
modern patterns for organizing code into modules de-emphasizes much of the
reliance on storing identifiers in that namespace.

Still, as our code proliferates more and more beyond the confines of the browser,
it's especially important we have a solid grasp on the differences in how the global
scope (and global scope object!) behave across different JS environments.

With the big picture of global scope now sharper in focus, the next chapter again
descends into the deeper details of lexical scope, examining how and when
variables can be used.

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 5: The (Not So) Secret
Lifecycle of Variables

By now you should have a decent grasp of the nesting of scopes, from the global
scope downward—called a program's scope chain.

But just knowing which scope a variable comes from is only part of the story. If a
variable declaration appears past the first statement of a scope, how will any
references to that identifier before the declaration behave? What happens if you
try to declare the same variable twice in a scope?

JS's particular flavor of lexical scope is rich with nuance in how and when
variables come into existence and become available to the program.

When Can | Use a Variable?

At what point does a variable become available to use within its scope? There
may seem to be an obvious answer: after the variable has been declared/created.
Right? Not quite.

Consider:

greeting();

function greeting() {
.log("Hello!");
+

This code works fine. You may have seen or even written code like it before. But
did you ever wonder how or why it works? Specifically, why can you access the
identifier greeting from line 1 (to retrieve and execute a function reference),
even though the greeting() function declaration doesn't occur until line 4?

Recall Chapter 1 points out that all identifiers are registered to their respective
scopes during compile time. Moreover, every identifier is created at the beginning
of the scope it belongs to, every time that scope is entered.

The term most commonly used for a variable being visible from the beginning of
its enclosing scope, even though its declaration may appear further down in the
scope, is called hoisting.

But hoisting alone doesn't fully answer the question. We can see an identifier
called greeting from the beginning of the scope, but why can we call the
greeting() function before it's been declared?

In other words, how does the variable greeting have any value (the function
reference) assigned to it, from the moment the scope starts running? The answer
is a special characteristic of formal function declarations, called function
hoisting. When a function declaration's name identifier is registered at the top of
its scope, it's additionally auto-initialized to that function's reference. That's why
the function can be called throughout the entire scope!

One key detail is that both function hoisting and var -flavored variable hoisting
attach their name identifiers to the nearest enclosing function scope (or, if none,
the global scope), not a block scope.

NOTE:

Declarations with 1let and const still hoist (see the TDZ discussion later
in this chapter). But these two declaration forms attach to their enclosing
block rather than just an enclosing function as with var and function
declarations. See "Scoping with Blocks" in Chapter 6 for more information.

Hoisting: Declaration vs. Expression

Function hoisting only applies to formal function declarations (specifically those
which appear outside of blocks—see "FiB" in Chapter 6), not to function
expression assignments. Consider:

greeting();

var greeting = function greeting() {
.log("Hello!");
+

Line 1 (greeting();) throws an error. But the kind of error thrown is very
important to notice. A TypeError means we're trying to do something with a value
that is not allowed. Depending on your JS environment, the error message would
say something like, "undefined' is not a function," or more helpfully, "greeting' is
not a function."

Notice that the error is not a ReferenceError . JS isn't telling us that it couldn't find
greeting as an identifier in the scope. It's telling us that greeting was found but
doesn't hold a function reference at that moment. Only functions can be invoked,
so attempting to invoke some non-function value results in an error.

But what does greeting hold, if not the function reference?

In addition to being hoisted, variables declared with var are also automatically
initialized to undefined at the beginning of their scope—again, the nearest
enclosing function, or the global. Once initialized, they're available to be used
(assigned to, retrieved from, etc.) throughout the whole scope.

So on that first line, greeting exists, but it holds only the default undefined
value. It's not until line 4 that greeting gets assigned the function reference.

Pay close attention to the distinction here. A function declaration is hoisted and
initialized to its function value (again, called function hoisting). A var variable
is also hoisted, and then auto-initialized to undefined . Any subsequent

function expression assignments to that variable don't happen until that
assignment is processed during runtime execution.

In both cases, the name of the identifier is hoisted. But the function reference
association isn't handled at initialization time (beginning of the scope) unless the
identifier was created in a formal function declaration.

Variable Hoisting

Let's look at another example of variable hoisting:

greeting = "Hello!";
. log(greeting);

var greeting = "Howdy!";

Though greeting isn't declared until line 5, it's available to be assigned to as
early as line 1. Why?

There's two necessary parts to the explanation:

o the identifier is hoisted,
e and it's automatically initialized to the value undefined from the top of the
scope.

NOTE:

Using variable hoisting of this sort probably feels unnatural, and many
readers might rightly want to avoid relying on it in their programs. But should
all hoisting (including function hoisting) be avoided? We'll explore these
different perspectives on hoisting in more detail in Appendix A.

Hoisting: Yet Another Metaphor

Chapter 2 was full of metaphors (to illustrate scope), but here we are faced with
yet another: hoisting itself. Rather than hoisting being a concrete execution step
the JS engine performs, it's more useful to think of hoisting as a visualization of
various actions JS takes in setting up the program before execution.

The typical assertion of what hoisting means: lifting—like lifting a heavy weight
upward—any identifiers all the way to the top of a scope. The explanation often
asserted is that the JS engine will actually rewrite that program before execution,
so that it looks more like this:

var greeting;

greeting = "Hello!";
.log(greeting);

greeting = "Howdy!";

The hoisting (metaphor) proposes that JS pre-processes the original program and
re-arranges it a bit, so that all the declarations have been moved to the top of their
respective scopes, before execution. Moreover, the hoisting metaphor asserts that
function declarations are, in their entirety, hoisted to the top of each scope.
Consider:

studentName = "Suzy";
greeting();

function greeting() {
.log(Hello ${ studentName }!);
+

var studentName;

The "rule" of the hoisting metaphor is that function declarations are hoisted first,
then variables are hoisted immediately after all the functions. Thus, the hoisting
story suggests that program is re-arranged by the JS engine to look like this:

function greeting() {
.log(Hello ${ studentName }!);
+

var studentName;

studentName = "Suzy";
greeting();

This hoisting metaphor is convenient. Its benefit is allowing us to hand wave over
the magical look-ahead pre-processing necessary to find all these declarations
buried deep in scopes and somehow move (hoist) them to the top; we can just
think about the program as if it's executed by the JS engine in a single pass, top-
down.

Single-pass definitely seems more straightforward than Chapter 1's assertion of a
two-phase processing.

Hoisting as a mechanism for re-ordering code may be an attractive simplification,
but it's not accurate. The JS engine doesn't actually re-arrange the code. It can't
magically look ahead and find declarations; the only way to accurately find them,
as well as all the scope boundaries in the program, would be to fully parse the
code.

Guess what parsing is? The first phase of the two-phase processing! There's no
magical mental gymnastics that gets around that fact.

So if the hoisting metaphor is (at best) inaccurate, what should we do with the
term? | think it's still useful—indeed, even members of TC39 regularly use it'—but
| don't think we should claim it's an actual re-arrangement of source code.

WARNING:

Incorrect or incomplete mental models often still seem sufficient because
they can occasionally lead to accidental right answers. But in the long run
it's harder to accurately analyze and predict outcomes if your thinking isn't
particularly aligned with how the JS engine works.

| assert that hoisting should be used to refer to the compile-time operation of
generating runtime instructions for the automatic registration of a variable at the
beginning of its scope, each time that scope is entered.

That's a subtle but important shift, from hoisting as a runtime behavior to its
proper place among compile-time tasks.

Re-declaration?

What do you think happens when a variable is declared more than once in the
same scope? Consider:

var studentName = "Frank';
. log(studentName) ;

var studentName;
. log(studentName) ;

What do you expect to be printed for that second message? Many believe the
second var studentName has re-declared the variable (and thus "reset" it), so
they expect undefined to be printed.

But is there such a thing as a variable being "re-declared" in the same scope? No.
If you consider this program from the perspective of the hoisting metaphor, the

code would be re-arranged like this for execution purposes:

var studentName;
var studentName;

studentName = "Frank";
. log(studentName) ;

. log(studentName) ;

Since hoisting is actually about registering a variable at the beginning of a scope,
there's nothing to be done in the middle of the scope where the original program
actually had the second var studentName statement. It's just a no-op(eration), a
pointless statement.

TIP:

In the style of the conversation narrative from Chapter 2, Compiler would
find the second var declaration statement and ask the Scope Manager if it
had already seen a studentName identifier; since it had, there wouldn't be
anything else to do.

It's also important to point out that var studentName; doesn't mean var
studentName = undefined; , as most assume. Let's prove they're different by
considering this variation of the program:

var studentName = "Frank';
. log(studentName) ;

var studentName;
. log(studentName) ;

var studentName = H
. log(studentName) ;

See how the explicit = undefined initialization produces a different outcome than
assuming it happens implicitly when omitted? In the next section, we'll revisit this
topic of initialization of variables from their declarations.

A repeated var declaration of the same identifier name in a scope is effectively
a do-nothing operation. Here's another illustration, this time across a function of
the same name:

var greeting;

function greeting() {
.log("Hello!");

+

var greeting;

typeof greeting;

var greeting = "Hello!";

typeof greeting;

The first greeting declaration registers the identifier to the scope, and because
it's a var the auto-initialization will be undefined . The function declaration
doesn't need to re-register the identifier, but because of function hoisting it
overrides the auto-initialization to use the function reference. The second var
greeting by itself doesn't do anything since greeting is already an identifier and
function hoisting already took precedence for the auto-initialization.

Actually assigning "Hello!" to greeting changes its value from the initial
function greeting() to the string; var itself doesn't have any effect.

What about repeating a declaration within a scope using let or const ?

let studentName = "Frank";
. log(studentName) ;

let studentName = "Suzy";

This program will not execute, but instead immediately throw a SyntaxError .
Depending on your JS environment, the error message will indicate something
like: "studentName has already been declared." In other words, this is a case
where attempted "re-declaration” is explicitly not allowed!

It's not just that two declarations involving 1et will throw this error. If either
declaration uses let , the other can be either 1et or var , and the error will still
occur, as illustrated with these two variations:

var studentName = "Frank";

let studentName = "Suzy";
and:

let studentName = "Frank";

var studentName = "Suzy";

In both cases, a syntaxError is thrown on the second declaration. In other
words, the only way to "re-declare" a variable is to use var for all (two or more)
of its declarations.

But why disallow it? The reason for the error is not technical per se, as var "re-
declaration" has always been allowed; clearly, the same allowance could have

been made for let .

It's really more of a "social engineering" issue. "Re-declaration" of variables is
seen by some, including many on the TC39 body, as a bad habit that can lead to
program bugs. So when ES6 introduced 1et , they decided to prevent "re-
declaration" with an error.

NOTE:

This is of course a stylistic opinion, not really a technical argument. Many
developers agree with the position, and that's probably in part why TC39
included the error (as well as 1et conforming to const). But a reasonable
case could have been made that staying consistent with var 's precedent
was more prudent, and that such opinion-enforcement was best left to opt-in
tooling like linters. In Appendix A, we'll explore whether var (and its
associated behavior, like "re-declaration") can still be useful in modern JS.

When Compiler asks Scope Manager about a declaration, if that identifier has
already been declared, and if either/both declarations were made with 1et , an
error is thrown. The intended signal to the developer is "Stop relying on sloppy re-
declaration!"

Constants?

The const keyword is more constrained than 1let . Like let, const cannot be
repeated with the same identifier in the same scope. But there's actually an

overriding technical reason why that sort of "re-declaration” is disallowed, unlike
let which disallows "re-declaration" mostly for stylistic reasons.

The const keyword requires a variable to be initialized, so omitting an
assignment from the declaration results in a SyntaxError :

const empty;

const declarations create variables that cannot be re-assigned:

const studentName = "Frank";
. log(studentName) ;

studentName = "Suzy";

The studentName variable cannot be re-assigned because it's declared with a

const .

WARNING:

The error thrown when re-assigning studentName iS a TypeError , nota
SyntaxError . The subtle distinction here is actually pretty important, but
unfortunately far too easy to miss. Syntax errors represent faults in the
program that stop it from even starting execution. Type errors represent

faults that arise during program execution. In the preceding snippet,
"Frank" is printed out before we process the re-assignment of
studentName , which then throws the error.

Soif const declarations cannot be re-assigned, and const declarations always
require assignments, then we have a clear technical reason why const must
disallow any "re-declarations": any const "re-declaration" would also necessarily
be a const re-assignment, which can't be allowed!

const studentName = "Frank";

const studentName

"Suzy";

Since const "re-declaration” must be disallowed (on those technical grounds),
TC39 essentially felt that 1et "re-declaration" should be disallowed as well, for
consistency. It's debatable if this was the best choice, but at least we have the
reasoning behind the decision.

Loops

So it's clear from our previous discussion that JS doesn't really want us to "re-
declare" our variables within the same scope. That probably seems like a
straightforward admonition, until you consider what it means for repeated
execution of declaration statements in loops. Consider:

var keepGoing = H
while (keepGoing) {

let value = .random() ;

if (value >) {
keepGoing = H

+

Is value being "re-declared" repeatedly in this program? Will we get errors
thrown? No.

All the rules of scope (including "re-declaration" of 1et -created variables) are
applied per scope instance. In other words, each time a scope is entered during
execution, everything resets.

Each loop iteration is its own new scope instance, and within each scope
instance, value is only being declared once. So there's no attempted "re-
declaration," and thus no error. Before we consider other loop forms, what if the
value declaration in the previous snippet were changed to a var ?

var keepGoing = H
while (keepGoing) {

var value = .random() ;

if (value >) {
keepGoing = ;

+

Is value being "re-declared" here, especially since we know var allows it? No.
Because var is not treated as a block-scoping declaration (see Chapter 6), it
attaches itself to the global scope. So there's just one value variable, in the
same scope as keepGoing (global scope, in this case). No "re-declaration” here,
either!

One way to keep this all straight is to remember that var , let ,and const
keywords are effectively removed from the code by the time it starts to execute.
They're handled entirely by the compiler.

If you mentally erase the declarator keywords and then try to process the code, it
should help you decide if and when (re-)declarations might occur.

What about "re-declaration" with other loop forms, like for -loops?

for (let i = 0; 1 < 3; i++) {
let value = i * g
.log("${ i }: ${ value }');

It should be clear that there's only one value declared per scope instance. But
what about i ? Is it being "re-declared"?

To answer that, consider what scope i is in. It might seem like it would be in the
outer (in this case, global) scope, but it's not. It's in the scope of for -loop body,
just like value is. In fact, you could sorta think about that loop in this more
verbose equivalent form:

{
let $$i = 0;
for (;o$$1 < 35 $%i++) {
let 1 = $%$i;
let value = i x 10;
Llog(t${ i }: ${ value }');
+
+

Now it should be clear: the i and value variables are both declared exactly
once per scope instance. No "re-declaration" here.

What about other for -loop forms?

for (let index in students) {
+
for (let student of students) {

s

Same thing with for..in and for..of loops: the declared variable is treated as
inside the loop body, and thus is handled per iteration (aka, per scope instance).
No "re-declaration."

OK, | know you're thinking that | sound like a broken record at this point. But let's
explore how const impacts these looping constructs. Consider:

var keepGoing = ;
while (keepGoing) {

const value = .random() ;
if (value >) {

keepGoing = ;
+

Just like the 1et variant of this program we saw earlier, const is being run
exactly once within each loop iteration, so it's safe from "re-declaration” troubles.
But things get more complicated when we talk about for -loops.

for..in and for..of are fine to use with const :

for (const index in students) {
+
for (const student of students) {

S

But not the general for -loop:

for (const i = 0; i < 3; i++) {

What's wrong here? We could use 1let just fine in this construct, and we
asserted that it creates a new i for each loop iteration scope, so it doesn't even
seem to be a "re-declaration.”

Let's mentally "expand" that loop like we did earlier:

{
const $%$i = 0;
for (5 $$i < 3; $$i++) {
const i = $%$i;
b
H

Do you spot the problem? Our i is indeed just created once inside the loop.
That's not the problem. The problem is the conceptual $$i that must be
incremented each time with the $$i++ expression. That's re-assignment (not
"re-declaration"), which isn't allowed for constants.

Remember, this "expanded" form is only a conceptual model to help you intuit the
source of the problem. You might wonder if JS could have effectively made the

const $$i = @ instead into 1let $ii = @ , which would then allow const to work
with our classic for -loop? It's possible, but then it could have introduced
potentially surprising exceptions to for -loop semantics.

For example, it would have been a rather arbitrary (and likely confusing) nuanced
exception to allow i++ inthe for -loop header to skirt strictness of the const
assignment, but not allow other re-assignments of i inside the loop iteration, as
is sometimes useful.

The straightforward answer is: const can't be used with the classic for -loop
form because of the required re-assignment.

Interestingly, if you don't do re-assignment, then it's valid:

var keepGoing = g

for (const i = 0; keepGoing;) {
keepGoing = (.random() >)

That works, but it's pointless. There's no reason to declare i in that position with
a const , since the whole point of such a variable in that position is to be used
for counting iterations. Just use a different loop form, like a while loop, or use
a let!

Uninitialized Variables (aka, TDZ)

With var declarations, the variable is "hoisted" to the top of its scope. But it's
also automatically initialized to the undefined value, so that the variable can be
used throughout the entire scope.

However, 1let and const declarations are not quite the same in this respect.

Consider:

. log(studentName) ;
let studentName = "Suzy";

The result of this program is that a ReferenceError is thrown on the first line.
Depending on your JS environment, the error message may say something like:
"Cannot access studentName before initialization."

NOTE:
The error message as seen here used to be much more vague or
misleading. Thankfully, several of us in the community were successfully

able to lobby for JS engines to improve this error message so it more
accurately tells you what's wrong!

That error message is quite indicative of what's wrong: studentName exists on line
1, but it's not been initialized, so it cannot be used yet. Let's try this:

studentName = "Suzy";

. log(studentName) ;

let studentName;

Oops. We still get the ReferenceError , but now on the first line where we're trying
to assign to (aka, initialize!) this so-called "uninitialized" variable studentName .
What's the deal!?

The real question is, how do we initialize an uninitialized variable? For
let / const , the only way to do so is with an assignment attached to a
declaration statement. An assignment by itself is insufficient! Consider:

let studentName = "Suzy";
. log(studentName) ;

Here, we are initializing the studentName (in this case, to "suzy" instead of
undefined) by way of the 1let declaration statement form that's coupled with an
assignment.

Alternatively:

let studentName;

studentName = "Suzy";

. log(studentName) ;

NOTE:

That's interesting! Recall from earlier, we said that var studentName; is not
the same as var studentName = undefined; , but here with tlet , they
behave the same. The difference comes down to the fact that var
studentName automatically initializes at the top of the scope, where et
studentName does not.

Remember that we've asserted a few times so far that Compiler ends up
removing any var / let / const declarators, replacing them with the instructions
at the top of each scope to register the appropriate identifiers.

So if we analyze what's going on here, we see that an additional nuance is that
Compiler is also adding an instruction in the middle of the program, at the point
where the variable studentName was declared, to handle that declaration's auto-
initialization. We cannot use the variable at any point prior to that initialization
occuring. The same goes for const as it does for let .

The term coined by TC39 to refer to this period of time from the entering of a
scope to where the auto-initialization of the variable occurs is: Temporal Dead
Zone (TDZ).

The TDZ is the time window where a variable exists but is still uninitialized, and
therefore cannot be accessed in any way. Only the execution of the instructions
left by Compiler at the point of the original declaration can do that initialization.
After that moment, the TDZ is done, and the variable is free to be used for the rest
of the scope.

A var also has technically has a TDZ, but it's zero in length and thus
unobservable to our programs! Only 1let and const have an observable TDZ.

By the way, "temporal" in TDZ does indeed refer to time not position in code.
Consider:

askQuestion();

let studentName = "Suzy";

function askQuestion() {
.log(${ studentName }, do you know?');
+

Even though positionally the console.log(..) referencing studentName comes

afferthe let studentName declaration, timing wise the askQuestion() function is
invoked before the 1et statementis encountered, while studentName is still in

its TDZ! Hence the error.

There's a common misconception that TDZ means 1let and const do not hoist.
This is an inaccurate, or at least slightly misleading, claim. They definitely hoist.

The actual difference is that 1let / const declarations do not automatically
initialize at the beginning of the scope, the way var does. The debate then is if
the auto-initialization is part of hoisting, or not? | think auto-registration of a
variable at the top of the scope (i.e., what | call "hoisting") and auto-initialization at
the top of the scope (to undefined) are distinct operations and shouldn't be
lumped together under the single term "hoisting."

We've already seen that let and const don't auto-initialize at the top of the
scope. But let's prove that 1et and const do hoist (auto-register at the top of
the scope), courtesy of our friend shadowing (see "Shadowing" in Chapter 3):

var studentName = "Kyle";

{
. log(studentName) ;
let studentName = "Suzy";
. log(studentName) ;

}

What's going to happen with the first console.log(..) statement? If tlet
studentName didn't hoist to the top of the scope, then the first console.log(..)
should print "kyle" , right? At that moment, it would seem, only the outer
studentName exists, so that's the variable console.log(..) should access and
print.

But instead, the first console.log(..) throws a TDZ error, because in fact, the
inner scope's studentName was hoisted (auto-registered at the top of the scope).
What didn't happen (yet!) was the auto-initialization of that inner studentName ;
it's still uninitialized at that moment, hence the TDZ violation!

So to summarize, TDZ errors occur because 1let / const declarations do hoist
their declarations to the top of their scopes, but unlike var , they defer the auto-
initialization of their variables until the moment in the code's sequencing where
the original declaration appeared. This window of time (hint: temporal), whatever
its length, is the TDZ.

How can you avoid TDZ errors?

My advice: always put your 1let and const declarations at the top of any scope.
Shrink the TDZ window to zero (or near zero) length, and then it'll be moot.

But why is TDZ even a thing? Why didn't TC39 dictate that 1let / const auto-
initialize the way var does? Just be patient, we'll come back to explore the why
of TDZ in Appendix A.

Finally Initialized

Working with variables has much more nuance than it seems at first glance.
Hoisting, (re)declaration, and the TDZ are common sources of confusion for
developers, especially those who have worked in other languages before coming
to JS. Before moving on, make sure your mental model is fully grounded on these
aspects of JS scope and variables.

Hoisting is generally cited as an explicit mechanism of the JS engine, but it's
really more a metaphor to describe the various ways JS handles variable
declarations during compilation. But even as a metaphor, hoisting offers useful
structure for thinking about the life-cycle of a variable—when it's created, when it's
available to use, when it goes away.

Declaration and re-declaration of variables tend to cause confusion when thought
of as runtime operations. But if you shift to compile-time thinking for these
operations, the quirks and shadows diminish.

The TDZ (temporal dead zone) error is strange and frustrating when encountered.
Fortunately, TDZ is relatively straightforward to avoid if you're always careful to
place 1let / const declarations at the top of any scope.

As you successfully navigate these twists and turns of variable scope, the next
chapter will lay out the factors that guide our decisions to place our declarations in
various scopes, especially nested blocks.

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Chapter 6: Limiting Scope Exposure

So far our focus has been explaining the mechanics of how scopes and variables
work. With that foundation now firmly in place, our attention raises to a higher
level of thinking: decisions and patterns we apply across the whole program.

To begin, we're going to look at how and why we should be using different levels
of scope (functions and blocks) to organize our program's variables, specifically to
reduce scope over-exposure.

Least Exposure

It makes sense that functions define their own scopes. But why do we need
blocks to create scopes as well?

Software engineering articulates a fundamental discipline, typically applied to
software security, called "The Principle of Least Privilege" (POLP). POLP And a
variation of this principle that applies to our current discussion is typically labeled
as "Least Exposure" (POLE).

POLP expresses a defensive posture to software architecture: components of the
system should be designed to function with least privilege, least access, least
exposure. If each piece is connected with minimum-necessary capabilities, the
overall system is stronger from a security standpoint, because a compromise or
failure of one piece has a minimized impact on the rest of the system.

If POLP focuses on system-level component design, the POLE Exposure variant
focuses on a lower level; we'll apply it to how scopes interact with each other.

In following POLE, what do we want to minimize the exposure of? Simply: the
variables registered in each scope.

Think of it this way: why shouldn't you just place all the variables of your program
out in the global scope? That probably immediately feels like a bad idea, but it's
worth considering why that is. When variables used by one part of the program
are exposed to another part of the program, via scope, there are three main
hazards that often arise:

« Naming Collisions: if you use a common and useful variable/function name
in two different parts of the program, but the identifier comes from one shared
scope (like the global scope), then name collision occurs, and it's very likely
that bugs will occur as one part uses the variable/function in a way the other
part doesn't expect.

For example, imagine if all your loops used a single global i index variable,
and then it happens that one loop in a function is running during an iteration
of a loop from another function, and now the shared i variable gets an
unexpected value.

¢ Unexpected Behavior: if you expose variables/functions whose usage is
otherwise private to a piece of the program, it allows other developers to use
them in ways you didn't intend, which can violate expected behavior and
cause bugs.

For example, if your part of the program assumes an array contains all
numbers, but someone else's code accesses and modifies the array to
include booleans and strings, your code may then misbehave in unexpected
ways.

Worse, exposure of private details invites those with mal-intent to try to work
around limitations you have imposed, to do things with your part of the
software that shouldn't be allowed.

¢ Unintended Dependency: if you expose variables/functions unnecessarily, it
invites other developers to use and depend on those otherwise private
pieces. While that doesn't break your program today, it creates a refactoring
hazard in the future, because now you cannot as easily refactor that variable
or function without potentially breaking other parts of the software that you
don't control.

For example, if your code relies on an array of numbers, and you later decide
it's better to use some other data structure instead of an array, you now must
take on the liability of adjusting other affected parts of the software.

POLE, as applied to variable/function scoping, essentially says, default to
exposing the bare minimum necessary, keeping everything else as private as
possible. Declare variables in as small and deeply nested of scopes as possible,
rather than placing everything in the global (or even outer function) scope.

If you design your software accordingly, you have a much greater chance of
avoiding (or at least minimizing) these three hazards.

Consider:

function diff() {
if (x >y) {
let tmp = x;
X =Y;
y = tmp;
+

return y - x;

In this diff(..) function, we want to ensure that y is greater than or equal to
x , so that when we subtract (y - x), the resultis e orlarger. If x is initially
larger (the result would be negative!), we swap x and y usinga tmp variable,
to keep the result positive.

In this simple example, it doesn't seem to matter whether tmp is inside the if
block or whether it belongs at the function level—it certainly shouldn't be a global
variable! However, following the POLE principle, tmp should be as hidden in
scope as possible. So we block scope tmp (using let)tothe if block.

Hiding in Plain (Function) Scope

It should now be clear why it's important to hide our variable and function
declarations in the lowest (most deeply nested) scopes possible. But how do we
do so?

We've already seen the let and const keywords, which are block scoped
declarators; we'll come back to them in more detail shortly. But first, what about
hiding var or function declarations in scopes? That can easily be done by
wrapping a function scope around a declaration.

Let's consider an example where function scoping can be useful.

The mathematical operation "factorial" (notated as "6!") is the multiplication of a
given integer against all successively lower integers down to 1 —actually, you
can stop at 2 since multiplying 1 does nothing. In other words, "6!" is the same
as "6 5!", which is the same as "6 5 * 4!", and so on. Because of the nature of the
math involved, once any given integer's factorial (like "4!") has been calculated,
we shouldn't need to do that work again, as it'll always be the same answer.

So if you naively calculate factorial for 6 , then later want to calculate factorial for
7 , you might unnecessarily re-calculate the factorials of all the integers from 2
up to 6. If you're willing to trade memory for speed, you can solve that wasted
computation by caching each integer's factorial as it's calculated:

var cache = {};

function factorial(x) {
if (x < 2) return 1;
if (!(x in cache)) {
cache[x] = x *x factorial(x - 1);
+
return cachel[x];

}

factorial(6);

cache;

factorial(7);

We're storing all the computed factorials in cache so that across multiple calls to

factorial(..) , the previous computations remain. But the cache variable is
pretty obviously a private detail of how factorial(..) works, not something that
should be exposed in an outer scope—especially not the global scope.

NOTE:

factorial(..) here is recursive—a call to itself is made from inside—but
that's just for brevity of code sake; a non-recursive implementation would
yield the same scoping analysis with respect to cache .

However, fixing this over-exposure issue is not as simple as hiding the cache
variable inside factorial(..) , as it might seem. Since we need cache to
survive multiple calls, it must be located in a scope outside that function. So what
can we do?

Define another middle scope (between the outer/global scope and the inside of
factorial(..))for cache to be located:

function hideTheCache() {
var cache = {};

return factorial;

function factorial(x) {

if (x < 2) return 1;
if (!(x in cache)) {

cache[x] = x *x factorial(x - 1);
}

return cachelx];

+
var factorial = hideTheCache();

factorial(6);

factorial(7);

The hideTheCache() function serves no other purpose than to create a scope for
cache to persist in across multiple calls to factorial(..) . But for

factorial(..) to have accessto cache , we have to define factorial(..)
inside that same scope. Then we return the function reference, as a value from
hideTheCache() , and store it in an outer scope variable, also named factorial .
Now as we call factorial(..) (multiple times!), its persistent cache stays
hidden yet accessible only to factorial(..) !

OK, but... it's going to be tedious to define (and name!) a hideTheCache(..)
function scope each time such a need for variable/function hiding occurs,
especially since we'll likely want to avoid name collisions with this function by
giving each occurrence a unique name. Ugh.

NOTE:

The illustrated technique—caching a function's computed output to optimize
performance when repeated calls of the same inputs are expected—is quite
common in the Functional Programming (FP) world, canonically referred to
as "memoization"; this caching relies on closure (see Chapter 7). Also, there
are memory usage concerns (addressed in "A Word About Memory" in
Appendix B). FP libraries will usually provide an optimized and vetted utility
for memoization of functions, which would take the place of

hideTheCache(..) here. Memoization is beyond the scope (pun intended!)
of our discussion, but see my Functional-Light JavaScript book for more
information.

Rather than defining a new and uniquely named function each time one of those
scope-only-for-the-purpose-of-hiding-a-variable situations occurs, a perhaps
better solution is to use a function expression:

var factorial = (function hideTheCache() {
var cache = {};

function factorial(x) {

if (x < 2) return 1;
if (!(x in cache)) {
cache[x] = x * factorial(x - 1);
+
return cachel[x];
+
return factorial;
HO;
factorial(6);
factorial(7);

Wait! This is still using a function to create the scope for hiding cache , and in this
case, the function is still named hideTheCache , S0 how does that solve anything?

Recall from "Function Name Scope" (in Chapter 3), what happens to the name
identifier from a function expression. Since hideTheCache(..) is defined as a
function expression instead of a function declaration, its name is in its own
scope—essentially the same scope as cache —rather than in the outer/global
scope.

That means we can name every single occurrence of such a function expression

the exact same name, and never have any collision. More appropriately, we can
name each occurrence semantically based on whatever it is we're trying to hide,

and not worry that whatever name we choose is going to collide with any other
function expression scope in the program.

In fact, we could just leave off the name entirely—thus defining an "anonymous
function expression" instead. But Appendix A will discuss the importance of
names even for such scope-only functions.

Invoking Function Expressions Immediately

There's another important bit in the previous factorial recursive program that's
easy to miss: the line at the end of the function expression that contains })
0; .

Notice that we surrounded the entire function expressioninasetof (..),
and then on the end, we added that second () parentheses set; that's actually
calling the function expression we just defined. Moreover, in this case, the first
set of surrounding (..) around the function expression is not strictly
necessary (more on that in a moment), but we used them for readability sake
anyway.

So, in other words, we're defining a function expression that's then immediately
invoked. This common pattern has a (very creative!l) name: Immediately Invoked
Function Expression (lIFE).

An IIFE is useful when we want to create a scope to hide variables/functions.
Since it's an expression, it can be used in any place in a JS program where an
expression is allowed. An IIFE can be named, as with hideTheCache() , or (much
more commonly!) unnamed/anonymous. And it can be standalone or, as before,
part of another statement— hideTheCache() returns the factorial() function
reference which is then = assigned to the variable factorial .

For comparison, here's an example of a standalone IIFE:

(function(){

HO;

Unlike earlier with hideTheCache() , where the outer surrounding (..) were
noted as being an optional stylistic choice, for a standalone IIFE they're required;
they distinguish the function as an expression, not a statement. For
consistency, however, always surround an IIFE function with (..) .

NOTE:

Technically, the surrounding (..) aren't the only syntactic way to ensure
the function in an IIFE is treated by the JS parser as a function
expression. We'll look at some other options in Appendix A.

Function Boundaries

Beware that using an IIFE to define a scope can have some unintended
consequences, depending on the code around it. Because an IIFE is a full
function, the function boundary alters the behavior of certain
statements/constructs.

For example, a return statement in some piece of code would change its
meaning if an IIFE is wrapped around it, because now the return would refer to
the IIFE's function. Non-arrow function IIFEs also change the binding of a this
keyword—more on that in the Objects & Classes book. And statements like
break and continue won't operate across an IIFE function boundary to control
an outer loop or block.

So, if the code you need to wrap a scope around has return, this , break , Or
continue init, an IIFE is probably not the best approach. In that case, you might
look to create the scope with a block instead of a function.

Scoping with Blocks

You should by this point feel fairly comfortable with the merits of creating scopes
to limit identifier exposure.

So far, we looked at doing this via function (i.e., IIFE) scope. But let's now
consider using let declarations with nested blocks. In general, any { .. }
curly-brace pair which is a statement will act as a block, but not necessarily as a
scope.

A block only becomes a scope if necessary, to contain its block-scoped
declarations (i.e., let or const). Consider:

{
let thisIsNowAScope = H
for (let i = 0; i < 5; i++) {
if (1% 2 ==20){
.log(1i);
+
+
+

Notall { .. } curly-brace pairs create blocks (and thus are eligible to become
scopes):

e Object literalsuse { .. } curly-brace pairs to delimit their key-value lists,
but such object values are not scopes.

e class uses { .. } curly-braces around its body definition, but this is not a
block or scope.

e A function uses { .. } around its body, but this is not technically a block
—it's a single statement for the function body. It is, however, a (function)
scope.

e The { .. } curly-brace pairona switch statement (around the set of
case clauses) does not define a block/scope.

Other than such non-block examples, a { .. } curly-brace pair can define a
block attached to a statement (like an if or for), or stand alone by itself—see
the outermost { .. } curly brace pair in the previous snippet. An explicit block of
this sort—if it has no declarations, it's not actually a scope—serves no operational
purpose, though it can still be useful as a semantic signal.

Explicit standalone { .. } blocks have always been valid JS syntax, but since
they couldn't be a scope prior to ES6's let / const , they are quite rare.
However, post ES6, they're starting to catch on a little bit.

In most languages that support block scoping, an explicit block scope is an
extremely common pattern for creating a narrow slice of scope for one or a few
variables. So following the POLE principle, we should embrace this pattern more

widespread in JS as well; use (explicit) block scoping to narrow the exposure of
identifiers to the minimum practical.

An explicit block scope can be useful even inside of another block (whether the
outer block is a scope or not).

For example:

if (somethingHappened) {

{
let msg = somethingHappened.message();
notifyOthers(msg);

+

recoverFromSomething();

Here, the { .. } curly-brace pair inside the if statementis an even smaller
inner explicit block scope for msg , since that variable is not needed for the entire

if block. Most developers would just block-scope msg to the if block and
move on. And to be fair, when there's only a few lines to consider, it's a toss-up
judgement call. But as code grows, these over-exposure issues become more
pronounced.

So does it matter enough to add the extra { .. } pair and indentation level? |
think you should follow POLE and always (within reason!) define the smallest
block for each variable. So | recommend using the extra explicit block scope as
shown.

Recall the discussion of TDZ errors from "Uninitialized Variables (TDZ)" (Chapter
5). My suggestion there was: to minimize the risk of TDZ errors with 1let / const
declarations, always put those declarations at the top of their scope.

If you find yourself placing a let declaration in the middle of a scope, first think,
"Oh, no! TDZ alert!" If this 1et declaration isn't needed in the first half of that
block, you should use an inner explicit block scope to further narrow its exposure!

Another example with an explicit block scope:

function getNextMonthStart() {
var nextMonth, year;

{

let curMonth;

[, year, curMonth 1 = dateStr.match(

/(\d{4})-(\d{2})-\d{2}/
) | [

nextMonth = ((curMonth) % 12) + 1;
+
if (nextMonth == 1) {

year++;
+

return “${ year }-3${
(nextMonth).padStart(2,"0")
}-01;
+
getNextMonthStart("2019-12-25");

Let's first identify the scopes and their identifiers:

1. The outer/global scope has one identifier, the function
getNextMonthStart(..) .

2. The function scope for getNextMonthStart(..) has three: dateStr
(parameter), nextMonth , and vyear .

3. The { .. } curly-brace pair defines an inner block scope that includes one
variable: curMonth .

So why put curMonth in an explicit block scope instead of just alongside

nextMonth and year in the top-level function scope? Because curMonth is only
needed for those first two statements; at the function scope level it's over-
exposed.

This example is small, so the hazards of over-exposing curMonth are pretty
limited. But the benefits of the POLE principle are best achieved when you adopt
the mindset of minimizing scope exposure by default, as a habit. If you follow the
principle consistently even in the small cases, it will serve you more as your
programs grow.

Let's now look at an even more substantial example:

function sortNamesByLength() {
var buckets = [];

for (let firstName of names) {
if (buckets[firstName.length] ==) {
buckets[firstName. length]l = [];
}
buckets [firstName.length].push(firstName);

let sortedNames = [];

for (let bucket of buckets) {
if (bucket) {

bucket.sort();

sortedNames = [
...sortedNames,
.« bucket

¥

return sortedNames;
+

sortNamesByLength([
"Sally",
"Suzy",
"Frank",
"John",
"Jennifer",
"Scott"

There are six identifiers declared across five different scopes. Could all of these
variables have existed in the single outer/global scope? Technically, yes, since
they're all uniquely named and thus have no name collisions. But this would be
really poor code organization, and would likely lead to both confusion and future
bugs.

We split them out into each inner nested scope as appropriate. Each variable is
defined at the innermost scope possible for the program to operate as desired.

sortedNames could have been defined in the top-level function scope, but it's only
needed for the second half of this function. To avoid over-exposing that variable in
a higher level scope, we again follow POLE and block-scope it in the inner explicit
block scope.

var and let

Next, let's talk about the declaration var buckets . That variable is used across
the entire function (except the final return statement). Any variable that is
needed across all (or even most) of a function should be declared so that such
usage is obvious.

NOTE:

The parameter names isn't used across the whole function, but there's no
way limit the scope of a parameter, so it behaves as a function-wide
declaration regardless.

So why did we use var instead of 1let to declare the buckets variable?
There's both semantic and technical reasons to choose var here.

Stylistically, var has always, from the earliest days of JS, signaled "variable that
belongs to a whole function." As we asserted in "Lexical Scope" (Chapter 1), var
attaches to the nearest enclosing function scope, no matter where it appears.
That's true even if var appears inside a block:

function diff(x,y) {
if (x >y) {
var tmp = x;
X =Y;
y = tmp;
+

return y - Xx;

Even though var is inside a block, its declaration is function-scoped (to
diff(..)), not block-scoped.

While you can declare var inside a block (and still have it be function-scoped), |
would recommend against this approach except in a few specific cases
(discussed in Appendix A). Otherwise, var should be reserved for use in the top-
level scope of a function.

Why not just use 1let in that same location? Because var is visually distinct
from 1let and therefore signals clearly, "this variable is function-scoped." Using

let in the top-level scope, especially if not in the first few lines of a function, and
when all the other declarations in blocks use 1et , does not visually draw
attention to the difference with the function-scoped declaration.

In other words, | feel var better communicates function-scoped than 1et does,

and let both communicates (and achieves!) block-scoping where var is
insufficient. As long as your programs are going to need both function-scoped and
block-scoped variables, the most sensible and readable approach is to use both
var and let together, each for their own best purpose.

There are other semantic and operational reasons to choose var or 1let in
different scenarios. We'll explore the case for var and 1let in more detail in
Appendix A.

WARNING:

My recommendation to use both var and 1let is clearly controversial and
contradicts the majority. It's far more common to hear assertions like, "var is
broken, let fixes it" and, "never use var, let is the replacement.” Those
opinions are valid, but they're merely opinions, just like mine. var is not
factually broken or deprecated; it has worked since early JS and it will
continue to work as long as JS is around.

Where To let ?

My advice to reserve var for (mostly) only a top-level function scope means that
most other declarations should use 1et . But you may still be wondering how to
decide where each declaration in your program belongs?

POLE already guides you on those decisions, but let's make sure we explicitly
state it. The way to decide is not based on which keyword you want to use. The
way to decide is to ask, "What is the most minimal scope exposure that's
sufficient for this variable?"

Once that is answered, you'll know if a variable belongs in a block scope or the
function scope. If you decide initially that a variable should be block-scoped, and
later realize it needs to be elevated to be function-scoped, then that dictates a
change not only in the location of that variable's declaration, but also the
declarator keyword used. The decision-making process really should proceed like
that.

If a declaration belongs in a block scope, use 1et . If it belongs in the function
scope, use var (again, just my opinion).

But another way to sort of visualize this decision making is to consider the pre-

ESG6 version of a program. For example, let's recall diff(..) from earlier:
function diff() {
var tmp;
if (x >y) {
tmp = x;
X =y;
y = tmp;
b
return y - x;
}
In this version of diff(..) , tmp is clearly declared in the function scope. Is that

appropriate for tmp ? | would argue, no. tmp is only needed for those few
statements. It's not needed for the return statement. It should therefore be
block-scoped.

Prior to ES6, we didn't have 1let so we couldn't actually block-scope it. But we
could do the next-best thing in signaling our intent:

function diff(x,y) {
if (x >y) {

var tmp = x;
X =Y
y = tmp;

+

return y - Xx;

Placing the var declaration for tmp inside the if statement signals to the
reader of the code that tmp belongs to that block. Even though JS doesn't
enforce that scoping, the semantic signal still has benefit for the reader of your
code.

Following this perspective, you can find any var that's inside a block of this sort
and switch itto let to enforce the semantic signal already being sent. That's
proper usage of let in my opinion.

Another example that was historically based on var but which should now pretty
much always use 1let isthe for loop:
for (var i = 0; 1 < 5; i++) {

S

No matter where such a loop is defined, the i should basically always be used
only inside the loop, in which case POLE dictates it should be declared with 1et
instead of var :

for (let i = 0; i < 5; i++) {
¥
Almost the only case where switching a var toa tlet in this way would "break"

your code is if you were relying on accessing the loop's iterator (i) outside/after
the loop, such as:

for (var i = 0; i < 5; i++) {
if (checkValue(i)) {
break;
+
+
if (i <5) A

.log("The loop stopped early!");

This usage pattern is not terribly uncommon, but most feel it smells like poor code
structure. A preferable approach is to use another outer-scoped variable for that
purpose:

var lastI;

for (let i = 0; i < 5; i++) {
lastIl = i;
if (checkValue(i)) {
break;
+
+

if (lastI < 5) {
.log("The loop stopped early!");
+

lastI is needed across this whole scope, so it's declared with var . i is only
needed in (each) loop iteration, so it's declared with et .

What's the Catch?

So far we've asserted that var and parameters are function-scoped, and
let / const signal block-scoped declarations. There's one little exception to call
out: the catch clause.

Since the introduction of try..catch back in ES3 (in 1999), the catch clause
has used an additional (little-known) block-scoping declaration capability:

try {
doesntExist();
+
catch (err) {
.log(err)

let onlyHere = 3
var outerVariable = B

. log(outerVariable);

.log(err)

The err variable declared by the catch clause is block-scoped to that block.
This catch clause block can hold other block-scoped declarations via 1let . But
a var declaration inside this block still attaches to the outer function/global
scope.

ES2019 (recently, at the time of writing) changed catch clauses so their
declaration is optional; if the declaration is omitted, the catch block is no longer
(by default) a scope; it's still a block, though!

So if you need to react to the condition that an exception occurred (so you can
gracefully recover), but you don't care about the error value itself, you can omit
the catch declaration:

try {

doOptionOne();
+
catch {
doOptionTwoInstead();
H

This is a small but delightful simplification of syntax for a fairly common use case,
and may also be slightly more performant in removing an unnecessary scope!

Function Declarations in Blocks (FiB)

We've seen now that declarations using let or const are block-scoped, and
var declarations are function-scoped. So what about function declarations
that appear directly inside blocks? As a feature, this is called "FiB."

We typically think of function declarations like they're the equivalent of a var
declaration. So are they function-scoped like var is?

No and yes. | know... that's confusing. Let's dig in:

if () {
function ask() {
.log("Does this run?");
+
+
ask();

What do you expect for this program to do? Three reasonable outcomes:

1. The ask() call might fail with a ReferenceError exception, because the
ask identifier is block-scoped to the if block scope and thus isn't available
in the outer/global scope.

2. The ask() call might fail with a TypeError exception, because the ask
identifier exists, but it's undefined (since the if statement doesn't run) and
thus not a callable function.

3. The ask() call might run correctly, printing out the "Does it run?" message.

Here's the confusing part: depending on which JS environment you try that code
snippet in, you may get different results! This is one of those few crazy areas
where existing legacy behavior betrays a predictable outcome.

The JS specification says that function declarations inside of blocks are block-
scoped, so the answer should be (1). However, most browser-based JS engines
(including v8, which comes from Chrome but is also used in Node) will behave as
(2), meaning the identifier is scoped outside the if block but the function value
is not automatically initialized, so it remains undefined .

Why are browser JS engines allowed to behave contrary to the specification?
Because these engines already had certain behaviors around FiB before ES6
introduced block scoping, and there was concern that changing to adhere to the

specification might break some existing website JS code. As such, an exception
was made in Appendix B of the JS specification, which allows certain deviations
for browser JS engines (only!).

NOTE:

You wouldn't typically categorize Node as a browser JS environment, since it
usually runs on a server. But Node's v8 engine is shared with Chrome (and
Edge) browsers. Since v8 is first a browser JS engine, it adopts this
Appendix B exception, which then means that the browser exceptions are
extended to Node.

One of the most common use cases for placing a function declaration in a block
is to conditionally define a function one way or another (like with an if..else
statement) depending on some environment state. For example:

if (typeof .isArray != "undefined") {
function isArray(a) {
return .isArray(a);
b
+
else {
function isArray(a) {
return .prototype.toString.call(a)
== "[object Array]";

It's tempting to structure code this way for performance reasons, since the typeof
Array.isArray check is only performed once, as opposed to defining just one

isArray(..) and putting the if statement inside it—the check would then run
unnecessarily on every call.

WARNING:

In addition to the risks of FiB deviations, another problem with conditional-
definition of functions is it's harder to debug such a program. If you end up
with a bug in the isArray(..) function, you first have to figure out which

isArray(..) implementation is actually running! Sometimes, the bug is that
the wrong one was applied because the conditional check was incorrect! If
you define multiple versions of a function, that program is always harder to
reason about and maintain.

In addition to the previous snippets, several other FiB corner cases are lurking;
such behaviors in various browsers and non-browser JS environments (JS
engines that aren't browser based) will likely vary. For example:

if () {
function ask() {
.log("Am I called?");

+
+
if () {
function ask() {
. log("Or what about me?");
+
+
for (let i = 0; 1 < 5; i++) {
function ask() {
.log("Or is it one of these?");
+
+
ask();

function ask() {
.log("Wait, maybe, it's this one?");

S

Recall that function hoisting as described in "When Can | Use a Variable?" (in
Chapter 5) might suggest that the final ask() in this snippet, with "Wait,
maybe..." as its message, would hoist above the call to ask() . Since it's the last
function declaration of that name, it should "win," right? Unfortunately, no.

It's not my intention to document all these weird corner cases, nor to try to explain
why each of them behaves a certain way. That information is, in my opinion,
arcane legacy trivia.

My real concern with FiB is, what advice can | give to ensure your code behaves
predictably in all circumstances?

As far as I'm concerned, the only practical answer to avoiding the vagaries of FiB
is to simply avoid FiB entirely. In other words, never place a function declaration
directly inside any block. Always place function declarations anywhere in the
top-level scope of a function (or in the global scope).

So for the earlier if..else example, my suggestion is to avoid conditionally
defining functions if at all possible. Yes, it may be slightly less performant, but this
is the better overall approach:

function isArray(a) {

if (typeof .isArray != "undefined") {
return .isArray(a);

+

else {
return .prototype.toString.call(a)

== "[object Arrayl";

If that performance hit becomes a critical path issue for your application, | suggest
you consider this approach:

var isArray = function isArray(a) {
return .isArray(a);

1

// override the definition, if you must
if (typeof .isArray == "undefined") {
isArray = function isArray(a) {
return .prototype.toString.call(a)
== "[object Arrayl";
b

It's important to notice that here I'm placing a function expression, not a
declaration, inside the if statement. That's perfectly fine and valid, for

function expressions to appear inside blocks. Our discussion about FiB is about
avoiding function declarations in blocks.

Even if you test your program and it works correctly, the small benefit you may
derive from using FiB style in your code is far outweighed by the potential risks in
the future for confusion by other developers, or variances in how your code runs
in other JS environments.

FiB is not worth it, and should be avoided.

Blocked Over

The point of lexical scoping rules in a programming language is so we can
appropriately organize our program's variables, both for operational as well as
semantic code communication purposes.

And one of the most important organizational techniques is to ensure that no
variable is over-exposed to unnecessary scopes (POLE). Hopefully you now
appreciate block scoping much more deeply than before.

Hopefully by you feel like you're standing on much more solid ground with
understanding lexical scope. From that base, the next chapter jumps into the
weighty topic of closure.

POLP. Principle of Least Privilege,
https://en.wikipedia.org/wiki/Principle_of least_privilege, 3 March 2020. <

https://en.wikipedia.org/wiki/Principle_of_least_privilege

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Appendix A: Exploring Further

We will now explore a number of nuances and edges around many of the topics
covered in the main text of this book. This appendix is optional, supporting
material.

Some people find diving too deeply into the nuanced corner cases and varying
opinions creates nothing but noise and distraction—supposedly, developers are
better served by sticking to the commonly-tread paths. My approach has been
criticized as being impractical and counterproductive. | understand and appreciate
that perspective, even if | don't necessarily share it.

| believe it's better to be empowered by knowledge of how things work than to just
gloss over details with assumptions and lack of curiosity. Ultimately, you will
encounter situations where something bubbles up from a piece you hadn't
explored. In other words, you won't get to spend all your time riding on the smooth
happy path. Wouldn't you rather be prepared for the inevitable bumps of off-
roading?

These discussions will also be more heavily influenced by my opinions than the
main text was, so keep that in mind as you consume and consider what is
presented. This appendix is a bit like a collection of mini-blog posts that elaborate
on various book topics. It's long and deep in the weeds, so take your time and
don't rush through everything here.

Implied Scopes

Scopes are sometimes created in non-obvious places. In practice, these implied
scopes don't often impact your program behavior, but it's still useful to know
they're happening. Keep an eye out for the following surprising scopes:

e Parameter scope
e Function name scope

Parameter Scope

The conversation metaphor in Chapter 2 implies that function parameters are
basically the same as locally declared variables in the function scope. But that's
not always true.

Consider:

function getStudentName() {

Here, studentID is a considered a "simple" parameter, so it does behave as a
member of the BLUE(2) function scope. But if we change it to be a non-simple
parameter, that's no longer technically the case. Parameter forms considered
non-simple include parameters with default values, rest parameters (using ...),
and destructured parameters.

Consider:

function getStudentName(/*BLUE(2)%/) {

Here, the parameter list essentially becomes its own scope, and the function's
scope is then nested inside that scope.

Why? What difference does it make? The non-simple parameter forms introduce
various corner cases, so the parameter list becomes its own scope to more
effectively deal with them.

Consider:

function getStudentName() {

b

Assuming left-to-right operations, the default = max1D for the studentID
parameter requires a maxID to already exist (and to have been initialized). This
code produces a TDZ error (Chapter 5). The reason is that maxID is declared in
the parameter scope, but it's not yet been initialized because of the order of
parameters. If the parameter order is flipped, no TDZ error occurs:

function getStudentName() {

}

The complication gets even more in the weeds if we introduce a function
expression into the default parameter position, which then can create its own
closure (Chapter 7) over parameters in this implied parameter scope:

function whatsTheDealHere() => id) {
id = 5;
.log(defaultID());

whatsTheDealHere(3);
// 5

That snippet probably makes sense, because the defaultID() arrow function
closes over the id parameter/variable, which we then re-assign to 5 . But now
let's introduce a shadowing definition of id in the function scope:

function whatsTheDealHere() => id) {
var id = 5;
.log(defaultID());

whatsTheDealHere(3);
// 3

Uh oh! The var id = 5 is shadowing the id parameter, but the closure of the
defaultID() function is over the parameter, not the shadowing variable in the
function body. This proves there's a scope bubble around the parameter list.

But it gets even crazier than that!

function whatsTheDealHere() => id) {
var id;

.log("local variable 'id': ${ id }');
. log(
“parameter 'id' (closure): ${ defaultID() }°
);

.log("reassigning 'id' to 5");
el = 53

.log(local variable 'id': ${ id }");
. log(
‘parameter 'id' (closure): ${ defaultID() }°
);

whatsTheDealHere(3);

// local variable 'id': 3 <-—— Huh!? Weird!
// parameter 'id' (closure): 3

// reassigning 'id' to 5

// local variable 'id': 5

// parameter 'id' (closure): 3

The strange bit here is the first console message. At that moment, the shadowing
id local variable has just been var id declared, which Chapter 5 asserts is
typically auto-initialized to undefined at the top of its scope. Why doesn't it print

undefined ?

In this specific corner case (for legacy compat reasons), JS doesn't auto-initialize
id to undefined , but rather to the value of the id parameter (3)!

Though the two id s look at that moment like they're one variable, they're
actually still separate (and in separate scopes). The id = 5 assignment makes
the divergence observable, where the id parameter stays 3 and the local
variable becomes 5 .

My advice to avoid getting bitten by these weird nuances:
¢ Never shadow parameters with local variables

o Avoid using a default parameter function that closes over any of the
parameters

At least now you're aware and can be careful about the fact that the parameter list
is its own scope if any of the parameters are non-simple.

Function Name Scope

In the "Function Name Scope" section in Chapter 3, | asserted that the name of a
function expression is added to the function's own scope. Recall:
var askQuestion = function ofTheTeacher(){

+;

It's true that ofTheTeacher is not added to the enclosing scope (where
askQuestion is declared), but it's also not just added to the scope of the function,
the way you're likely assuming. It's another strange corner case of implied scope.

The name identifier of a function expression is in its own implied scope, nested
between the outer enclosing scope and the main inner function scope.

If ofTheTeacher was in the function's scope, we'd expect an error here:

var askQuestion = function ofTheTeacher(){

let ofTheTeacher = "Confused, yet?";

4

The 1let declaration form does not allow re-declaration (see Chapter 5). But this
is perfectly legal shadowing, not re-declaration, because the two ofTheTeacher
identifiers are in separate scopes.

You'll rarely run into any case where the scope of a function's name identifier
matters. But again, it's good to know how these mechanisms actually work. To
avoid being bitten, never shadow function name identifiers.

Anonymous vs. Named Functions

As discussed in Chapter 3, functions can be expressed either in named or
anonymous form. It's vastly more common to use the anonymous form, but is that
a good idea?

As you contemplate naming your functions, consider:

¢ Name inference is incomplete

e Lexical names allow self-reference

¢ Names are useful descriptions

¢ Arrow functions have no lexical names
¢ IIFEs also need names

Explicit or Inferred Names?

Every function in your program has a purpose. If it doesn't have a purpose, take it
out, because you're just wasting space. If it does have a purpose, there is a name
for that purpose.

So far many readers likely agree with me. But does that mean we should always
put that name into the code? Here's where I'll raise more than a few eyebrows. |
say, unequivocally, yes!

First of all, "anonymous" showing up in stack traces is just not all that helpful to
debugging:

btn.addEventListener("click", function(){
setTimeout (function(){
["a",42].map(function(v){
. log(v.toUpperCase());
1)

Ugh. Compare to what is reported if | give the functions names:

btn.addEventListener("click", function onClick(){
setTimeout(function waitAMoment(){
["a",42].map(function allUpper(v){
.log(v.toUpperCase());
¥);
},100);
s

See how waitAMoment and allUpper names appear and give the stack trace
more useful information/context for debugging? The program is more debuggable
if we use reasonable names for all our functions.

NOTE:

The unfortunate "<anonymous>" that still shows up refers to the fact that the
implementation of Array.map(..) isn't presentin our program, but is built
into the JS engine. It's not from any confusion our program introduces with
readability shortcuts.

By the way, let's make sure we're on the same page about what a named function
is:

function thisIsNamed() {
/] .

ajax("some.url", function thisIsAlsoNamed(){
7 ac
B;

var notNamed = function(){
7 ac
+i

makeRequest ({
data: ,

cb /% also not a name */: function(){
70 ac

1}
var stillNotNamed = function butThisIs(){

1 oc
bR

"But wait!", you say. Some of those are named, right!?

var notNamed = function(){
/] ..
+;

var config = {
cb: function(){
1 oc
X

notNamed.name;
// notNamed

config.cb.name;
// cb

These are referred to as inferred names. Inferred names are fine, but they don't
really address the full concern I'm discussing.

Missing Names?

Yes, these inferred names might show up in stack traces, which is definitely better
than "anonymous" showing up. But...

function ajax() {
.log(cb.name);

ajax("some.url", function(){

1)

Oops. Anonymous function expressions passed as callbacks are incapable of
receiving an inferred name, so cb.name holds just the empty string "" . The vast
majority of all function expressions, especially anonymous ones, are used as
callback arguments; none of these get a name. So relying on name inference is
incomplete, at best.

And it's not just callbacks that fall short with inference:

var config = {};
config.cb = function(){
b

config.cb.name;

var [noName 1 = [function(){} 1;
noName.name

Any assignment of a function expression that's not a simple assignment will
also fail name inferencing. So, in other words, unless you're careful and
intentional about it, essentially almost all anonymous function expressions in
your program will in fact have no name at all.

Name inference is just... not enough.

And even ifa function expression does get an inferred name, that still doesn't
count as being a full named function.

Who am 1?

Without a lexical name identifier, the function has no internal way to refer to itself.
Self-reference is important for things like recursion and event handling:

runOperation(function()
if (num <= 1) return 1;
return num *x oopsNoNameToCall(num - 1);

1

btn.addEventListener("click", function(){
.log("should only respond to one click!");
btn.removeEventListener("click",oopsNoNameHere);
1)

Leaving off the lexical name from your callback makes it harder to reliably self-
reference the function. You could declare a variable in an enclosing scope that
references the function, but this variable is controlled by that enclosing scope—it
could be re-assigned, etc.—so it's not as reliable as the function having its own
internal self-reference.

Names are Descriptors

Lastly, and | think most importantly of all, leaving off a name from a function
makes it harder for the reader to tell what the function's purpose is, at a quick
glance. They have to read more of the code, including the code inside the
function, and the surrounding code outside the function, to figure it out.

Consider:

[1, 2, 3, 4,].filter(function(v){
return v % 2 == 1;

1

[1, 2, 3, 4,].filter(function keepOnlyOdds(v){
return v % 2 == 1;

1

There's just no reasonable argument to be made that omitting the name

keepOnlyodds from the first callback more effectively communicates to the reader
the purpose of this callback. You saved 13 characters, but lost important
readability information. The name keepoOnlyodds very clearly tells the reader, at a
quick first glance, what's happening.

The JS engine doesn't care about the name. But human readers of your code
absolutely do.

Can the reader look at v % 2 == 1 and figure out what it's doing? Sure. But they
have to infer the purpose (and name) by mentally executing the code. Even a
brief pause to do so slows down reading of the code. A good descriptive name
makes this process almost effortless and instant.

Think of it this way: how many times does the author of this code need to figure
out the purpose of a function before adding the name to the code? About once.

Maybe two or three times if they need to adjust the name. But how many times

will readers of this code have to figure out the name/purpose? Every single time
this line is ever read. Hundreds of times? Thousands? More?

No matter the length or complexity of the function, my assertion is, the author
should figure out a good descriptive name and add it to the code. Even the one-
liner functions in map(..) and then(..) statements should be named:

lookupTheRecords (someData)

.then(function extractSalesRecords()
return resp.allSales;

1)

.then(storeRecords);

The name extractSalesRecords tells the reader the purpose of this then(..)
handler better than just inferring that purpose from mentally executing return

resp.allSales .

The only excuse for not including a name on a function is either laziness (don't
want to type a few extra characters) or uncreativity (can't come up with a good
name). If you can't figure out a good name, you likely don't understand the
function and its purpose yet. The function is perhaps poorly designed, or it does
too many things, and should be re-worked. Once you have a well-designed,
single-purpose function, its proper name should become evident.

Here's a trick | use: while first writing a function, if | don't fully understand its
purpose and can't think of a good name to use, | just use T0DO as the name.
That way, later when reviewing my code, I'm likely to find those name
placeholders, and I'm more inclined (and more prepared!) to go back and figure
out a better name, rather than just leave it as T0DO .

All functions need names. Every single one. No exceptions. Any name you omit is
making the program harder to read, harder to debug, harder to extend and
maintain later.

Arrow Functions

Arrow functions are always anonymous, even if (rarely) they're used in a way that
gives them an inferred name. | just spent several pages explaining why
anonymous functions are a bad idea, so you can probably guess what | think
about arrow functions.

Don't use them as a general replacement for regular functions. They're more
concise, yes, but that brevity comes at the cost of omitting key visual delimiters
that help our brains quickly parse out what we're reading. And, to the point of this
discussion, they're anonymous, which makes them worse for readability from that
angle as well.

Arrow functions have a purpose, but that purpose is not to save keystrokes. Arrow
functions have lexical this behavior, which is somewhat beyond the bounds of our
discussion in this book.

Briefly: arrow functions don't define a this identifier keyword at all. If you use a
this inside an arrow function, it behaves exactly as any other variable

reference, which is that the scope chain is consulted to find a function scope (non-

arrow function) where it is defined, and to use that one.

In other words, arrow functions treat this like any other lexical variable.

If you're used to hacks like var self = this , orif you prefer to call .bind(this)
oninner function expressions, just to force them to inherita this from an
outer function like it was a lexical variable, then => arrow functions are
absolutely the better option. They're designed specifically to fix that problem.

So, in the rare cases you need lexical this, use an arrow function. It's the best tool
for that job. But just be aware that in doing so, you're accepting the downsides of
an anonymous function. You should expend additional effort to mitigate the

readability cost, such as more descriptive variable names and code comments.

IIFE Variations

All functions should have names. | said that a few times, right!? That includes
IIFEs.

(function(){

HO;

(function doThisInstead(){

HO;

How do we come up with a name for an IIFE? Identify what the IIFE is there for.
Why do you need a scope in that spot? Are you hiding a cache variable for
student records?

var getStudents = (function StoreStudentRecords(){
var studentRecords = [];

return function getStudents() {

HOo;

I named the IIFE sStoreStudentRecords because that's what it's doing: storing
student records. Every IIFE should have a name. No exceptions.

IIFEs are typically defined by placing (..) around the function expression,
as shown in those previous snippets. But that's not the only way to define an IIFE.
Technically, the only reason we're using that first surrounding setof (..) is
just so the function keyword isn't in a position to qualify as a function
declaration to the JS parser. But there are other syntactic ways to avoid being
parsed as a declaration:

!function thisISAnIIFE(){
)

+function soIsThisOne(){
Y0

~function andThisOneToo(){

H0);

The ', +, ~,and several other unary operators (operators with one operand)
can all be placed in front of function to turn itinto an expression. Then the final
() callis valid, which makes it an IIFE.

| actually kind of like using the void unary operator when defining a standalone
IIFE:

void function yepItsAnIIFE() {

Y0);

The benefit of void is, it clearly communicates at the beginning of the function
that this IIFE won't be returning any value.

However you define your IIFEs, show them some love by giving them names.

Hoisting: Functions and Variables

Chapter 5 articulated both function hoisting and variable hoisting. Since hoisting is
often cited as mistake in the design of JS, | wanted to briefly explore why both
these forms of hoisting can be beneficial and should still be considered.

Give hoisting a deeper level of consideration by considering the merits of:

« Executable code first, function declarations last
e Semantic placement of variable declarations

Function Hoisting

To review, this program works because of function hoisting:

getStudents();

function getStudents() {

b

The function declaration is hoisted during compilation, which means that
getStudents is an identifier declared for the entire scope. Additionally, the
getStudents identifier is auto-initialized with the function reference, again at the

beginning of the scope.

Why is this useful? The reason | prefer to take advantage of function hoisting is

that it puts the executable code in any scope at the top, and any further

declarations (functions) below. This means it's easier to find the code that will run

in any given area, rather than having to scroll and scroll, hoping to find a trailing
} marking the end of a scope/function somewhere.

| take advantage of this inverse positioning in all levels of scope:

getStudents();

function getStudents() {
var whatever = doSomething();

return whatever;

function doSomething() {

}

When | first open a file like that, the very first line is executable code that kicks off
its behavior. That's very easy to spot! Then, if | ever need to go find and inspect
getStudents() , | like that its first line is also executable code. Only if | need to
see the details of doSomething() do | go and find its definition down below.

In other words, | think function hoisting makes code more readable through a
flowing, progressive reading order, from top to bottom.

Variable Hoisting
What about variable hoisting?

Even though 1et and const hoist, you cannot use those variables in their TDZ
(see Chapter 5). So, the following discussion only applies to var declarations.
Before | continue, I'll admit: in almost all cases, | completely agree that variable
hoisting is a bad idea:

pleaseDontDoThis = "bad idea";
var pleaseDontDoThis;

While that kind of inverted ordering was helpful for function hoisting, here | think it
usually makes code harder to reason about.

But there's one exception that I've found, somewhat rarely, in my own coding. It
has to do with where | place my var declarations inside a CommonJS module
definition.

Here's how | typically structure my module definitions in Node:

var aModuleINeed = ("very-helpful");

var anotherModule = ("kinda-helpful");
var publicAPI = .assign(.exports,{
getStudents,
addStudents,
s

var cache = { };
var otherData = [|;

function getStudents() {
+
function addStudents() {

b

Notice how the cache and otherData variables are in the "private" section of the
module layout? That's because | don't plan to expose them publicly. So | organize
the module so they're located alongside the other hidden implementation details
of the module.

But I've had a few rare cases where | needed the assignments of those values to
happen above, before | declare the exported public API of the module. For

instance:
var publicAPI = .assign(.exports, {
getStudents,
addStudents,
refreshData: refreshData.bind(,cache)
1)

| need the cache variable to have already been assigned a value, because that
value is used in the initialization of the public API (the .bind(..) partial-
application).

Should | just move the var cache = { .. } up to the top, above this public API
initialization? Well, perhaps. But now it's less obvious that var cache is a private
implementation detail. Here's the compromise I've (somewhat rarely) used:

cache = {};

var publicAPI = .assign(.exports,{
getStudents,
addStudents,
refreshData: refreshData.bind(,cache)
1)
var cache g

See the variable hoisting? I've declared the cache down where it belongs,
logically, but in this rare case I've used it earlier up above, in the area where its
initialization is needed. | even left a hint at the value that's assigned to cache ina
code comment.

That's literally the only case I've ever found for leveraging variable hoisting to
assign a variable earlier in a scope than its declaration. But | think it's a
reasonable exception to employ with caution.

The Case for var

Speaking of variable hoisting, let's have some real talk for a bit about var , a
favorite villain devs love to blame for many of the woes of JS development. In
Chapter 5, we explored 1let / const and promised we'd revisit where var falls
in the whole mix.

As | lay out the case, don't miss:

e var was never broken

e let is your friend

e const has limited utility

e The best of both worlds: var and tlet

Don't Throw Out var

var is fine, and works just fine. It's been around for 25 years, and it'll be around
and useful and functional for another 25 years or more. Claims that var is
broken, deprecated, outdated, dangerous, or ill-designed are bogus
bandwagoning.

Does that mean var is the right declarator for every single declaration in your
program? Certainly not. But it still has its place in your programs. Refusing to use
it because someone on the team chose an aggressive linter opinion that chokes
on var is cutting off your nose to spite your face.

OK, now that I've got you really riled up, let me try to explain my position.

For the record, I'm a fan of 1et , for block-scoped declarations. | really dislike
TDZ and | think that was a mistake. But 1et itself is great. | use it often. In fact, |
probably use it as much or more than | use var .

const -antly Confused

const on the other hand, | don't use as often. I'm not going to dig into all the
reasons why, but it comes down to const not carrying its own weight. That is,
while there's a tiny bit of benefit of const in some cases, that benefit is
outweighed by the long history of troubles around const confusion in a variety of
languages, long before it ever showed up in JS.

const pretends to create values that can't be mutated—a misconception that's
extremely common in developer communities across many languages—whereas
what it really does is prevent re-assignment.

const studentIDs = [14, 73, 1;

studentIDs.push(6);

Using a const with a mutable value (like an array or object) is asking for a future
developer (or reader of your code) to fall into the trap you set, which was that they
either didn't know, or sorta forgot, that value immutability isn't at all the same thing
as assignment immutability.

| just don't think we should set those traps. The only time | ever use const is
when I'm assigning an already-immutable value (like 42 or "Hello, friends!"),
and when it's clearly a "constant" in the sense of being a named placeholder for a
literal value, for semantic purposes. That's what const is best used for. That's
pretty rare in my code, though.

If variable re-assignment were a big deal, then const would be more useful. But
variable re-assignment just isn't that big of a deal in terms of causing bugs.
There's a long list of things that lead to bugs in programs, but "accidental re-
assignment" is way, way down that list.

Combine that with the fact that const (and 1et) are supposed to be used in
blocks, and blocks are supposed to be short, and you have a really small area of
your code where a const declaration is even applicable. A const on line 1 of
your ten-line block only tells you something about the next nine lines. And the
thing it tells you is already obvious by glancing down at those nine lines: the
variable is never on the left-hand side of an = ; it's not re-assigned.

That's it, that's all const really does. Other than that, it's not very useful. Stacked
up against to the significant confusion of value vs. assignment immutability,
const loses a lot of its luster.

A let (or var !)that's never re-assigned is already behaviorally a "constant",
even though it doesn't have the compiler guarantee. That's good enough in most
cases.

var and let

In my mind, const is pretty rarely useful, so this is only two-horse race between
let and var . Butit's not really a race either, because there doesn't have to be
just one winner. They can both win... different races.

The fact is, you should be using both var and 1let in your programs. They are
not interchangeable: you shouldn't use var where a let is called for, but you
also shouldn't use 1let where a var is most appropriate.

So where should we still use var ? Under what circumstances is it a better
choice than 1let ?

For one, | always use var in the top-level scope of any function, regardless of
whether that's at the beginning, middle, or end of the function. | also use var in
the global scope, though | try to minimize usage of the global scope.

Why use var for function scoping? Because that's exactly what var does.
There literally is no better tool for the job of function scoping a declaration than a
declarator that has, for 25 years, done exactly that.

You could use 1et in this top-level scope, but it's not the best tool for that job. |
also find that if you use 1et everywhere, then it's less obvious which
declarations are designed to be localized and which ones are intended to be used
throughout the function.

By contrast, | rarely use a var inside a block. That's what 1et is for. Use the
best tool for the job. If you see a 1et , it tells you that you're dealing with a
localized declaration. If you see var , it tells you that you're dealing with a
function-wide declaration. Simple as that.

function getStudents() {
var studentRecords = [];

for (let record of data.records) {

let id = “student-${ record.id };
studentRecords.push({
id,

record.name
});
+

return studentRecords;

The studentRecords variable is intended for use across the whole function. var
is the best declarator to tell the reader that. By contrast, record and id are
intended for use only in the narrower scope of the loop iteration, so 1let is the
best tool for that job.

In addition to this best tool semantic argument, var has a few other
characteristics that, in certain limited circumstances, make it more powerful.

One example is when a loop is exclusively using a variable, but its conditional
clause cannot see block-scoped declarations inside the iteration:

function commitAction() {
do {
let result = commit();
var done = result && result.code == 1;
} while (!done);

Here, result is clearly only used inside the block, so we use 1let . But done is
a bit different. It's only useful for the loop, but the while clause cannot see 1let
declarations that appear inside the loop. So we compromise and use var , so
that done is hoisted to the outer scope where it can be seen.

The alternative—declaring done outside the loop—separates it from where it's
first used, and either necessitates picking a default value to assign, or worse,
leaving it unassigned and thus looking ambiguous to the reader. | think var
inside the loop is preferable here.

Another helpful characteristic of var is seen with declarations inside unintended
blocks. Unintended blocks are blocks that are created because the syntax
requires a block, but where the intent of the developer is not really to create a
localized scope. The best illustration of unintended scope is the try..catch
statement:

function getStudents() {
try {

var records = fromCache("students");
+

catch (err) {

var records = [1;

There are other ways to structure this code, yes. But | think this is the best way,
given various trade-offs.

| don't want to declare records (with var or 1let) outside of the try block,

and then assign to it in one or both blocks. | prefer initial declarations to always be
as close as possible (ideally, same line) to the first usage of the variable. In this
simple example, that would only be a couple of lines distance, but in real code it
can grow to many more lines. The bigger the gap, the harder it is to figure out
what variable from what scope you're assigning to. var used at the actual
assignment makes it less ambiguous.

Also notice | used var in boththe try and catch blocks. That's because |
want to signal to the reader that no matter which path is taken, records always
gets declared. Technically, that works because var is hoisted once to the
function scope. But it's still a nice semantic signal to remind the reader what either
var ensures. If var were only used in one of the blocks, and you were only
reading the other block, you wouldn't as easily discover where records was
coming from.

This is, in my opinion, a little superpower of var . Not only can it escape the
unintentional try..catch blocks, but it's allowed to appear multiple times in a
function's scope. You can't do that with 1et . It's not bad, it's actually a little
helpful feature. Think of var more like a declarative annotation that's reminding
you, each usage, where the variable comes from. "Ah ha, right, it belongs to the
whole function.”

This repeated-annotation superpower is useful in other cases:

function getStudents() {
var data = []1;

var data;

The second var data is not re-declaring data , it's just annotating for the
readers' benefit that data is a function-wide declaration. That way, the reader
doesn't need to scroll up 50+ lines of code to find the initial declaration.

I'm perfectly fine with re-using variables for multiple purposes throughout a
function scope. I'm also perfectly fine with having two usages of a variable be
separated by quite a few lines of code. In both cases, the ability to safely "re-
declare" (annotate) with var helps make sure | can tell where my data is
coming from, no matter where | am in the function.

Again, sadly, let cannot do this.

There are other nuances and scenarios when var turns out to offer some
assistance, but I'm not going to belabor the point any further. The takeaway is that
var can be useful in our programs alongside 1let (and the occasional const).
Are you willing to creatively use the tools the JS language provides to tell a richer

story to your readers?

Don't just throw away a useful tool like var because someone shamed you into
thinking it wasn't cool anymore. Don't avoid var because you got confused once
years ago. Learn these tools and use them each for what they're best at.

What's the Deal with TDZ?

The TDZ (temporal dead zone) was explained in Chapter 5. We illustrated how it
occurs, but we skimmed over any explanation of why it was necessary to
introduce in the first place. Let's look briefly at the motivations of TDZ.

Some breadcrumbs in the TDZ origin story:

e const s should never change
e It's all about time

e Should 1let behave more like const or var ?

Where It All Started

TDZ comes from const , actually.

During early ES6 development work, TC39 had to decide whether const (and

let) were going to hoist to the top of their blocks. They decided these
declarations would hoist, similar to how var does. Had that not been the case, |
think some of the fear was confusion with mid-scope shadowing, such as:

let greeting = "Hi!";

{
. log(greeting);
let greeting = "Hello, friends!";
3
What should we do with that console.log(..) statement? Would it make any

sense to JS devs for it to print "Hi!"? Seems like that could be a gotcha, to have
shadowing kick in only for the second half of the block, but not the first half. That's
not very intuitive, JS-like behavior. So 1let and const have to hoist to the top of
the block, visible throughout.

Butif let and const hoist to the top of the block (like var hoists to the top of
a function), why don't let and const auto-initialize (to undefined) the way
var does? Here was the main concern:

. log(studentName) ;

const studentName = "Frank"

Let's imagine that studentName not only hoisted to the top of this block, but was

also auto-initialized to undefined . For the first half of the block, studentName

could be observed to have the undefined value, such as with our
console.log(..) statement. Once the const studentName = .. statementis
reached, now studentName is assigned "Frank" . From that point forward,
studentName can't ever be re-assigned.

But, is it strange or surprising that a constant observably has two different values,
first undefined , then "Frank" ? That does seem to go against what we think a
const ant means; it should only ever be observable with one value.

So... now we have a problem. We can't auto-initialize studentName to undefined
(or any other value for that matter). But the variable has to exist throughout the
whole scope. What do we do with the period of time from when it first exists
(beginning of scope) and when it's assigned its value?

We call this period of time the "dead zone," as in the "temporal dead zone" (TDZ).
To prevent confusion, it was determined that any sort of access of a variable while
in its TDZ is illegal and must result in the TDZ error.

OK, that line of reasoning does make some sense, | must admit.

Who let the TDZ Out?

But that's just const . What about 1et ?

Well, TC39 made the decision: since we need a TDZ for const , we might as well
have a TDZ for let as well. In fact, if we make let have a TDZ, then we
discourage all that ugly variable hoisting people do. So there was a consistency
perspective and, perhaps, a bit of social engineering to shift developers' behavior.

My counter-argument would be: if you're favoring consistency, be consistent with
var instead of const ; let is definitely more like var than const . That's
especially true since they had already chosen consistency with var for the whole
hoisting-to-the-top-of-the-scope thing. Let const be its own unique deal with a
TDZ, and let the answer to TDZ purely be: just avoid the TDZ by always declaring
your constants at the top of the scope. | think this would have been more
reasonable.

But alas, that's not how it landed. let has a TDZ because const needs a TDZ,
because let and const mimic var in their hoisting to the top of the (block)
scope. There ya go. Too circular? Read it again a few times.

Are Synchronous Callbacks Still
Closures?

Chapter 7 presented two different models for tackling closure:

o Closure is a function instance remembering its outer variables even as that
function is passed around and invoked in other scopes.

e Closure is a function instance and its scope environment being preserved in-
place while any references to it are passed around and invoked from other
scopes.

These models are not wildly divergent, but they do approach from a different
perspective. And that different perspective changes what we identify as a closure.

Don't get lost following this rabbit trail through closures and callbacks:

e Calling back to what (or where)?

e Maybe "synchronous callback" isn't the best label

¢ lIF functions don't move around, why would they need closure?
o Deferring over time is key to closure

What is a Callback?

Before we revisit closure, let me spend a brief moment addressing the word
"callback." It's a generally accepted norm that saying "callback" is synonymous
with both asynchronous callbacks and synchronous callbacks. | don't think | agree
that this is a good idea, so | want to explain why and propose we move away from
that to another term.

Let's first consider an asynchronous callback, a function reference that will be
invoked at some future /ater point. What does "callback" mean, in this case?

It means that the current code has finished or paused, suspended itself, and that
when the function in question is invoked later, execution is entering back into the
suspended program, resuming it. Specifically, the point of re-entry is the code that
was wrapped in the function reference:

setTimeout(function waitForASecond(){

+)k

In this context, "calling back" makes a lot of sense. The JS engine is resuming our
suspended program by calling back in at a specific location. OK, so a callback is
asynchronous.

Synchronous Callback?

But what about synchronous callbacks? Consider:

function getlLabels() {
return studentIDs.map(
function formatIDLabel(id){
return ‘Student ID: ${
(id).padStart(6)

getLabels([14, 73, , 6 1);

Should we refer to formatIDLabel(..) as a callback? Is the map(..) ultility really
calling back into our program by invoking the function we provided?

There's nothing to call back into per se, because the program hasn't paused or
exited. We're passing a function (reference) from one part of the program to
another part of the program, and then it's immediately invoked.

There's other established terms that might match what we're doing—passing in a
function (reference) so that another part of the program can invoke it on our
behalf. You might think of this as Dependency Injection (DI) or Inversion of
Control (10C).

DI can be summarized as passing in necessary part(s) of functionality to another
part of the program so that it can invoke them to complete its work. That's a
decent description for the map(..) call above, isn'tit? The map(..) utility knows
to iterate over the list's values, but it doesn't know what to do with those values.
That's why we pass it the formatiDLabel(..) function. We pass in the
dependency.

loC is a pretty similar, related concept. Inversion of control means that instead of

the current area of your program controlling what's happening, you hand control
off to another part of the program. We wrapped the logic for computing a label
string in the function formatIDLabel(..) , then handed invocation control to the
map(..) utility.

Notably, Martin Fowler cites loC as the difference between a framework and a
library: with a library, you call its functions; with a framework, it calls your

functions. fowlerlOC

In the context of our discussion, either DI or IoC could work as an alternative label
for a synchronous callback.

But | have a different suggestion. Let's refer to (the functions formerly known as)
synchronous callbacks, as inter-invoked functions (lIFs). Yes, exactly, I'm playing
off IIFEs. These kinds of functions are inter-invoked, meaning: another entity
invokes them, as opposed to IIFEs, which invoke themselves immediately.

What's the relationship between an asynchronous callback and an IIF? An
asynchronous callback is an lIF that's invoked asynchronously instead of
synchronously.

Synchronous Closure?

Now that we've re-labeled synchronous callbacks as IIFs, we can return to our
main question: are IIFs an example of closure? Obviously, the [IF would have to
reference variable(s) from an outer scope for it to have any chance of being a
closure. The formatiDLabel(..) IIF from earlier does not reference any variables
outside its own scope, so it's definitely not a closure.

What about an IIF that does have external references, is that closure?

function printLabels() {
var list = .getElementByID("labelsList");

labels. forEach(
function renderLabel()
var 1i = .createELement (" 1i")
li.innerText = label;
list.appendChild(1li);

The inner renderLabel(..) IIF references list from the enclosing scope, so it's
an lIF that could have closure. But here's where the definition/model we choose
for closure matters:

e If renderLabel(..) is afunction that gets passed somewhere else, and
that function is then invoked, then yes, renderLabel(..) is exercising a
closure, because closure is what preserved its access to its original scope
chain.

e Butif, as in the alternative conceptual model from Chapter 7,
renderLabel(..) stays in place, and only a reference to it is passed to
forEach(..) , is there any need for closure to preserve the scope chain of
renderLabel(..) , while it executes synchronously right inside its own scope?

No. That's just normal lexical scope.

To understand why, consider this alternative form of printLabels(..) :

function printlLabels() {
var list = .getElementByID(" labelsList");

for (let label of labels) {

renderLabel(label);

+

function renderlLabel() {
var 1i = .createELement ("1i");
li.innerText = label;
list.appendChild(1i);

+

These two versions of printLabels(..) are essentially the same.

The latter one is definitely not an example of closure, at least not in any useful or
observable sense. It's just lexical scope. The former version, with forEach(..)
calling our function reference, is essentially the same thing. It's also not closure,
but rather just a plain ol' lexical scope function call.

Defer to Closure

By the way, Chapter 7 briefly mentioned partial application and currying (which do
rely on closure!). This is a interesting scenario where manual currying can be
used:

function printLabels() {
var list = .getElementByID(" labelsList");
var renderLabel = renderTo(list);

labels. forEach(renderLabel(label));

function renderTo() {
return function createlLabel()
var li = .createELement ("1i")

li.innerText = label;
list.appendChild(1i);
18

The inner function createLabel(..) , which we assign to renderLabel , is closed
over list , so closure is definitely being utilized.

Closure allows us to remember 1list for later, while we defer execution of the
actual label-creation logic from the renderTo(..) call to the subsequent
forEach(..) invocations of the createLabel(..) IIF. That may only be a brief
moment here, but any amount of time could pass, as closure bridges from call to
call.

Classic Module Variations

Chapter 8 explained the classic module pattern, which can look like this:

var StudentList = (function defineModule(){
var elems = [];

var publicAPI = {
renderList() {

+;

return publicAPI;

}) (Student);

Notice that we're passing Student (another module instance) in as a
dependency. But there's lots of useful variations on this module form you may
encounter. Some hints for recognizing these variations:

e Does the module know about its own API?
o Even if we use a fancy module loader, it's just a classic module
e Some modules need to work universally

Where's My API?

First, most classic modules don't define and use a publicAPI the way | have
shown in this code. Instead, they typically look like:

var StudentList = (function defineModule()
var elems = [];

return {
renderList() {

}
+;

}) (Student);

The only difference here is directly returning the object that serves as the public
API for the module, as opposed to first saving it to an inner publicAPI variable.
This is by far how most classic modules are defined.

But | strongly prefer, and always use myself, the former publicApr form. Two
reasons:

e publicAPI is a semantic descriptor that aids readability by making it more
obvious what the purpose of the object is.

e Storing an inner publicAPI variable that references the same external public
API object returned, can be useful if you need to access or modify the API
during the lifetime of the module.

For example, you may want to call one of the publicly exposed functions,
from inside the module. Or, you may want to add or remove methods
depending on certain conditions, or update the value of an exposed property.

Whatever the case may be, it just seems rather silly to me that we wouldn't
maintain a reference to access our own API. Right?

Asynchronous Module Defintion (AMD)

Another variation on the classic module form is AMD-style modules (popular
several years back), such as those supported by the RequireJS utility:

define(["./Student" 1,function StudentList(){
var elems = [];

return {
renderList() {

}
hH
s
If you look closely at StudentList(..) , it's a classic module factory function.
Inside the machinery of define(..) (provided by RequireJS), the

StudentList(..) function is executed, passing to it any other module instances

declared as dependencies. The return value is an object representing the public
API for the module.

This is based on exactly the same principles (including how the closure works!) as
we explored with classic modules.

Universal Modules (UMD)

The final variation we'll look at is UMD, which is less a specific, exact format and
more a collection of very similar formats. It was designed to create better interop
(without any build-tool conversion) for modules that may be loaded in browsers,
by AMD-style loaders, or in Node. | personally still publish many of my utility
libraries using a form of UMD.

Here's the typical structure of a UMD:

(function UMD()
if (
typeof define === "function" &&
define.amd
) {
define(definition);
+
else if (
typeof I== "undefined" &&
.exports
) {
.exports = definition(name,context);
+
else {
context[name] = definition(name,context);
+
}) ("StudentList", this, function DEF()

var elems = [];

return {
renderList() {

}
+;

i3 H

Though it may look a bit unusual, UMD is really just an IIFE.

What's different is that the main function expression part (at the top) of the IIFE
contains a series of if..else if statements to detect which of the three
supported environments the module is being loaded in.

The final () that normally invokes an IIFE is being passed three arguments:
"StudentsList" , this , and another function expression. If you match those
arguments to their parameters, you'll see they are: name , context , and
definition , respectively. "StudentList" (name) is the name label for the

module, primarily in case it's defined as a global variable. this (context)is
generally the window (aka, global object; see Chapter 4) for defining the module
by its name.

definition(..) is invoked to actually retrieve the definition of the module, and
you'll notice that, sure enough, that's just a classic module form!

There's no question that as of the time of this writing, ESM (ES Modules) are
becoming popular and widespread rapidly. But with millions and millions of
modules written over the last 20 years, all using some pre-ESM variation of
classic modules, they're still very important to be able to read and understand
when you come across them.

fowlerlOC 1 ersion of Control, Martin Fowler,

https://martinfowler.com/bliki/InversionOfControl.html, 26 June 2005. <

https://martinfowler.com/bliki/InversionOfControl.html

You Don't Know JS Yet: Scope &
Closures - 2nd Edition

Appendix B: Practice

This appendix aims to give you some challenging and interesting exercises to test
and solidify your understanding of the main topics from this book. It's a good idea
to try out the exercises yourself—in an actual code editor!—instead of skipping
straight to the solutions at the end. No cheating!

These exercises don't have a specific right answer that you have to get exactly.
Your approach may differ some (or a lot!) from the solutions presented, and that's
OK.

There's no judging you on how you write your code. My hope is that you come
away from this book feeling confident that you can tackle these sorts of coding
tasks built on a strong foundation of knowledge. That's the only objective, here. If
you're happy with your code, | am, too!

Buckets of Marbles

Remember Figure 2 from back in Chapter 2?

1 /var students = [7
2 { id: 14, name: "Kyle" 1}, o
3 { id: 73, name: "Suzy" },

4 { id: 112, name: "Frank" },

5 { id: 6, name: "Sarah" }

6 1;

7

8 | function getStudentName(;EEEEEEEB) {

9 - for q1et student\oflétudentsp { i
10 if (student.id == (studentID) {
11 return student.name;
I ©
13 3 ’
14 i

15

16 | var nextStudent = getStudentName(73);
17

18 | console.log(nextStudent);
19 // "Suzy"

Fig. 2 (Ch. 2): Colored Scope Bubbles

This exercise asks you to write a program—any program!—that contains nested
functions and block scopes, which satisfies these constraints:

 If you color all the scopes (including the global scope!) different colors, you
need at least six colors. Make sure to add a code comment labeling each
scope with its color.

BONUS: identify any implied scopes your code may have.
o Each scope has at least one identifier.
o Contains at least two function scopes and at least two block scopes.

e At least one variable from an outer scope must be shadowed by a nested
scope variable (see Chapter 3).

¢ At least one variable reference must resolve to a variable declaration at least
two levels higher in the scope chain.

TIP:

You can just write junk foo/bar/baz-type code for this exercise, but | suggest
you try to come up with some sort of non-trivial real'ish code that at least
does something kind of reasonable.

Try the exercise for yourself, then check out the suggested solution at the end of
this appendix.

Closure (PART 1)

Let's first practice closure with some common computer-math operations:

determining if a value is prime (has no divisors other than 1 and itself), and

generating a list of prime factors (divisors) for a given number.

For example:

isPrime(11);
isPrime(12);

factorize(11);
factorize(12);

Here's an implementation of isprime(..) , adapted from the Math.js library:
MathJSisPrime

function isPrime(v) {

if (v <= 3) {
return v > 1;

+

if (V% 2==0|]v%3==0){
return g

+

var vsqrt = Lsqrt(v);

for (let i = 5; i <= vSqrt; i += 6) {
if (vsi==0 || v (i+2) ==0) {

return B

}

+

return B

And here's a somewhat basic implementation of factorize(..) (notto be

confused with factorial(..) from Chapter 6):
function factorize(v) {
if (tisPrime(v)) {
let i = . floor(.sqrt(v));
while (v % i != 0) {
i-—;
}
return [

...factorize(i),
...factorize(v / i)
I

+

return [v];
+
NOTE:

| call this basic because it's not optimized for performance. It's binary-
recursive (which isn't tail-call optimizable), and it creates a lot of
intermediate array copies. It also doesn't order the discovered factors in any
way. There are many, many other algorithms for this task, but | wanted to
use something short and roughly understandable for our exercise.

If you were to call isPrime(4327) multiple times in a program, you can see that it
would go through all its dozens of comparison/computation steps every time. If
you consider factorize(..) , it's calling isPrime(..) many times as it computes
the list of factors. And there's a good chance most of those calls are repeats.
That's a lot of wasted work!

The first part of this exercise is to use closure to implement a cache to remember
the results of isPrime(..) , so that the primality (true or false) of a given
number is only ever computed once. Hint: we already showed this sort of caching
in Chapter 6 with factorial(..) .

If you look at factorize(..) , it's implemented with recursion, meaning it calls
itself repeatedly. That again means we may likely see a lot of wasted calls to
compute prime factors for the same number. So the second part of the exercise is
to use the same closure cache technique for factorize(..) .

Use separate closures for caching of isPrime(..) and factorize(..) , rather
than putting them inside a single scope.

Try the exercise for yourself, then check out the suggested solution at the end of
this appendix.

A Word About Memory

| want to share a little quick note about this closure cache technique and the
impacts it has on your application's performance.

We can see that in saving the repeated calls, we improve computation speed (in
some cases, by a dramatic amount). But this usage of closure is making an
explicit trade-off that you should be very aware of.

The trade-off is memory. We're essentially growing our cache (in memory)
unboundedly. If the functions in question were called many millions of times with
mostly unique inputs, we'd be chewing up a lot of memory. This can definitely be
worth the expense, but only if we think it's likely we see repetition of common
inputs so that we're taking advantage of the cache.

If most every call will have a unique input, and the cache is essentially never used
to any benefit, this is an inappropriate technique to employ.

It also might be a good idea to have a more sophisticated caching approach, such
as an LRU (least recently used) cache, that limits its size; as it runs up to the limit,
an LRU evicts the values that are... well, least recently used!

The downside here is that LRU is quite non-trivial in its own right. You'll want to
use a highly optimized implementation of LRU, and be keenly aware of all the
trade-offs at play.

Closure (PART 2)

In this exercise, we're going to again practive closure by defining a toggle(..)
utility that gives us a value toggler.

You will pass one or more values (as arguments) into toggle(..) , and get back a
function. That returned function will alternate/rotate between all the passed-in
values in order, one at a time, as it's called repeatedly.

function toggle(/* .. *x/) {

+

var hello = toggle("hello");
var on0ff = toggle("on","off");

var speed = toggle("slow","medium","fast");

hello();
hello();

on0ff();

on0ff();
on0ff();

The corner case of passing in no values to toggle(..) is not very important;
such a toggler instance could just always return undefined .

Try the exercise for yourself, then check out the suggested solution at the end of
this appendix.

Closure (PART 3)

In this third and final exercise on closure, we're going to implement a basic
calculator. The calculator() function will produce an instance of a calculator that
maintains its own state, in the form of a function (calc(..) , below):

function calculator() {
+

var calc = calculator();

Each time calc(..) is called, you'll pass in a single character that represents a

keypress of a calculator button. To keep things more straightforward, we'll restrict
our calculator to supporting entering only digits (0-9), arithmetic operations (+, -, *,
/), and "=" to compute the operation. Operations are processed strictly in the order

entered; there's no "()" grouping or operator precedence.

We don't support entering decimals, but the divide operation can result in them.
We don't support entering negative numbers, but the "-" operation can result in
them. So, you should be able to produce any negative or decimal number by first
entering an operation to compute it. You can then keep computing with that value.

The return of calc(..) calls should mimic what would be shown on a real
calculator, like reflecting what was just pressed, or computing the total when

pressing

For example:

Since this usage is a bit clumsy, here's a useCalc(..) helper, that runs the
calculator with characters one at a time from a string, and computes the display
each time:

function useCalc() {
return [...keys].reduce(

function showDisplay(){
var ret = (calc(key));
return (
display +
(
(ret != "' & key == "=") ?
) +
ret
);
Iy
);
+
useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128
useCalc(calc,"7%2x3="); // T*2%3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

The most sensible usage of this useCalc(..) helper is to always have "=" be the
last character entered.

Some of the formatting of the totals displayed by the calculator require special
handling. I'm providing this formatTotal(..) function, which your calculator
should use whenever it's going to return a current computed total (after an "=" is
entered):

function formatTotal() {
if (.isFinite(display)) {

let maxDigits = ;
if (.abs(display) >) {
maxDigits —= 6;

}

if (display < 2) {
maxDigits——;

}
if (.isInteger(display)) {
display = display
.toPrecision(maxDigits)
.replace(/\.0+$/,"");
}
else {
maxDigits——;
if (
.abs(display) >= 0 &&
.abs(display) <
) {
maxDigits——;
}
display = display
.toPrecision(maxDigits)
.replace(/0+$/,"");
t
+
else {
display = "ERR";
+

return display;

Don't worry too much about how formatTotal(..) works. Most of its logic is a
bunch of handling to limit the calculator display to 11 characters max, even if
negatives, repeating decimals, or even "e+" exponential notation is required.

Again, don't get too mired in the mud around calculator-specific behavior. Focus
on the memory of closure.

Try the exercise for yourself, then check out the suggested solution at the end of
this appendix.

Modules

This exercise is to convert the calculator from Closure (PART 3) into a module.

We're not adding any additional functionality to the calculator, only changing its
interface. Instead of calling a single function calc(..) , we'll be calling specific
methods on the public API for each "keypress" of our calculator. The outputs stay
the same.

This module should be expressed as a classic module factory function called
calculator() , instead of a singleton IIFE, so that multiple calculators can be
created if desired.

The public API should include the following methods:

e number(..) (input: the character/number "pressed")
e plus()

e minus()

e mult()
e div()
e eq()

Usage would look like:

var calc = calculator();

calc.number("4");
calc.plus();
calc.number("7");
calc.number("3");
calc.minus();
calc.number("2");
calc.eq();

formatTotal(..) remains the same from that previous exercise. But the
useCalc(..) helper needs to be adjusted to work with the module API:

function useCalc() {
var keyMappings = {

"+": "plus",
"= "minus",
"x": "mult",
"M Mdivt,
oty e

+

return [...keys].reduce(

function showDisplay(){
var fn = keyMappings[keyl || "number";
var ret = (calclfnl(key));
return (
display +
(
(ret != "" && key == "=") ?
) +
ret
);
+

s

useCalc(calc,"4+3=");
useCalc(calc,"+9=");
useCalc(calc,"*8=");
useCalc(calc,"7%2x3=");
useCalc(calc,"1/0=");
useCalc(calc,"+3=");
useCalc(calc,"51=");

Try the exercise for yourself, then check out the suggested solution at the end of
this appendix.

As you work on this exercise, also spend some time considering the pros/cons of
representing the calculator as a module as opposed to the closure-function
approach from the previous exercise.

BONUS: write out a few sentences explaining your thoughts.

BONUS #2: try converting your module to other module formats, including: UMD,
CommondS, and ESM (ES Modules).

Suggested Solutions

Hopefully you've tried out the exercises before you're reading this far. No
cheating!

Remember, each suggested solution is just one of a bunch of different ways to
approach the problems. They're not "the right answer," but they do illustrate a
reasonable way to approach each exercise.

The most important benefit you can get from reading these suggested solutions is
to compare them to your code and analyze why we each made similar or different
choices. Don't get into too much bikeshedding; try to stay focused on the main
topic rather than the small details.

Suggested: Buckets of Marbles

The Buckets of Marbles Exercise can be solved like this:

// RED(1)
const howMany = 3

// Sieve of Eratosthenes

function findPrimes () A
// BLUE(2)
var sieve = (howMany) . fill(DE
var max = .sqrt(howMany) ;
for (let 1 = 2; 1 < max; i++) {
// GREEN(3)
if (sievelil) {
// ORANGE(4)
let j = .pow(i,2)
for (let k = j; k < howMany; k += i) {
// PURPLE(5)
sievelk] = B
}
t
+
return sieve
.map(function getPrime({
// PINK(6)

if (flag) return prime;
return flag;

1)

filter(function onlyPrimes(v){
// YELLOW(7)
return !lv;

1)
.slice(1);
+
findPrimes (howMany) ;
// [

// 2, 3,5, 7, 11, 13, 17,
// 19, 23, 29, 31, 37, 41,
// 43, 47, 53, 59, 61, 67,
// 71, 73, 79, 83, 89, 97
/71

Suggested: Closure (PART 1)

The Closure Exercise (PART 1) for isPrime(..) and factorize(..) , can be
solved like this:

var isPrime = (function isPrime(v){
var primes = {};

return function isPrime(v) {
if (v in primes) {
return primes([v];

}

if (v <= 3) {
return (primes[v] = v > 1);

}

if (V% 2==0 || vs%3==0){
return (primes[v] =);

}

let vSqrt = .sqrt(v);

for (let i = 5; 1 <= vSqrt; i += 6) {
if (vesi==0||vs(i+2)=0){

return (primes[v] = D8

}

}

return (primes[v] = De

HOo;

var factorize = (function factorize(v){
var factors = {};

return function findFactors(v) {
if (v in factors) {
return factors|[v];

+
if (lisPrime(v)) {
let i = . floor(Lsqrt(v));
while (v % i !=0) {
i-—;
}
return (factors[v] = [
...findFactors(i),
...findFactors(v / i)
1);
}

return (factors[v] = [v]);
+;
HO;

The general steps | used for each utility:

1. Wrap an IIFE to define the scope for the cache variable to reside.

2. In the underlying call, first check the cache, and if a result is already known,
return.

3. At each place where a return was happening originally, assign to the cache
and just return the results of that assignment operation—this is a space
savings trick mostly just for brevity in the book.

| also renamed the inner function from factorize(..) to findFactors(..) . That's
not technically necessary, but it helps it make clearer which function the recursive
calls invoke.

Suggested: Closure (PART 2)

The Closure Exercise (PART 2) toggle(..) can be solved like this:

function toggle() {
var unset = {};
var cur = unset;

return function next(){
// save previous value back at
// the end of the list
if (cur !'= unset) {
vals.push(cur);
+
cur = vals.shift();
return cur;

+;

var hello = toggle("hello");
var on0ff = toggle("on","off");

var speed = toggle("slow","medium","fast");

hello(); // "hello"
hello(); // "hello"
on0ff(); // "on"
on0ff(); // "“off"
on0ff(); // “on"
speed(); // "slow"
speed(); // "medium"
speed(); // "fast"
speed(); // "slow"

Suggested: Closure (PART 3)

The Closure Exercise (PART 3) calculator() can be solved like this:

// from earlier:

//

// function useCalc(..) { .. }

// function formatTotal(..) { .. }

function calculator() {
var currentTotal = 0;
var currentVal = "";
var currentOper = "=";

return pressKey;
/] Fkskokokorskokskokokorskskokokokkokok

function pressKey(key){
// number key?
if (/\d/.test(key)) {
currentVal += key;
return key;
}
// operator key?
else if (/[+x/-1/.test(key)) {
// multiple operations in a series?
if (
currentOper != "=" &&
currentval != ""
) {
// implied '=' keypress
pressKey("=");
}
else if (currentval != "") {
currentTotal = Number(currentVal);
}
currentOper = key;
currentVal = "";
return key;
}
// = key?
else if (
key == "=" &&
currentOper != "="
) {
currentTotal = op(
currentTotal,
currentOper,
Number(currentVal)
D8
currentOper = "=";
currentVal = "";
return formatTotal(currentTotal);
}
return "";

55

function op(vall,oper,val2) {

var ops = {
// NOTE: using arrow functions
// only for brevity in the book
U (vi,v2) => vl + v2,
"ty (vi,v2) => vl - v2,
"k (vi,v2) => vl % v2,
/M (vl,v2) => vl / v2

I

return opsloper](vall,val2);

var calc = calculator();

useCalc(calc,"4+3=");
useCalc(calc,"+9=");
useCalc(calc,"*8=");
useCalc(calc,"7%2x3=");
useCalc(calc,"1/0=");
useCalc(calc,"+3=");
useCalc(calc,"51=");

NOTE:

Remember: this exercise is about closure. Don't focus too much on the
actual mechanics of a calculator, but rather on whether you are properly
remembering the calculator state across function calls.

Suggested: Modules

The Modules Exercise calculator() can be solved like this:

// from earlier:

//

// function useCalc(..) { .. }

// function formatTotal(..) { .. }

function calculator() {
var currentTotal = 0;
var currentVal = "";
var currentOper = "=";

var publicAPI = {
number,
eq'
plus() { return operator("+"); },
minus() { return operator("-"); },
mult() { return operator("s"); },
div() { return operator("/"); }

b
return publicAPI;
[/ skkskokskskokskskokkokokokkHokok

function number(key) {
// number key?
if (/\d/.test(key)) {
currentVal += key;
return key;

}
+
function eq() {
// = key?
if (currentOper !'= "=") {
currentTotal = op(
currentTotal,
currentOper,
Number(currentVal)
);
currentOper = "=";
currentVal = "";
return formatTotal(currentTotal);
}
return "";

function operator(key) {
// multiple operations in a series?
if (
currentOper != "=" &&
currentvVal != ""
) {
// implied '=' keypress
eq();
}
else if (currentval != "") {
currentTotal = Number(currentVal);
}
currentOper = key;
currentVal = "";
return key;

function op(vall,oper,val2) {
var ops = {

// NOTE: using arrow functions
// only for brevity in the book
"+ (vl,v2) => vl + v2,
ety (vi,v2) => vl - v2,
ks (vi,v2) => vl *x v2,
"/ (vi,v2) => vl / v2

HH

return opsloper](vall,val2);

var calc = calculator();

useCalc(calc,"4+3="); // 4+3=7
useCalc(calc,"+9="); // +9=16
useCalc(calc,"*8="); // *5=128
useCalc(calc,"7*2%3="); // T%2%3=42
useCalc(calc,"1/0="); // 1/0=ERR
useCalc(calc,"+3="); // +3=ERR
useCalc(calc,"51="); // 51

That's it for this book, congratulations on your achievement! When you're ready,
move on to Book 3, Objects & Classes.

MathJSisPrime_ Math js: isPrime(..),
https://github.com/josdejong/mathjs/blob/develop/src/function/utils/isPrime.
s, 3 March 2020. <

https://github.com/josdejong/mathjs/blob/develop/src/function/utils/isPrime.js

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

NOTE:

Work in progress

Table of Contents

o Foreword (by TBA)

e Preface

e Chapter 1: this Or That?

e Chapter 2: this All Makes Sense Now!
e Chapter 3: Objects

e Chapter 4: Mixing (Up) "Class" Objects
e Chapter 5: Prototypes

e Chapter 6: Behavior Delegation

e Appendix A: ES6 class

file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/toc2.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/foreword2.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/preface.md

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Chapter 1: this Or That?

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

One of the most confused mechanisms in JavaScript is the this keyword. It's a
special identifier keyword that's automatically defined in the scope of every
function, but what exactly it refers to bedevils even seasoned JavaScript
developers.

Any sufficiently advanced technology is indistinguishable from magic. --
Arthur C. Clarke

JavaScript's this mechanism isn't actually that advanced, but developers often
paraphrase that quote in their own mind by inserting "complex" or "confusing",
and there's no question that without lack of clear understanding, this can seem
downright magical in your confusion.

Note: The word "this" is a terribly common pronoun in general discourse. So, it
can be very difficult, especially verbally, to determine whether we are using "this"
as a pronoun or using it to refer to the actual keyword identifier. For clarity, | will
always use this to refer to the special keyword, and "this" or this or this
otherwise.

Why this ?

If the this mechanism is so confusing, even to seasoned JavaScript
developers, one may wonder why it's even useful? Is it more trouble than it's
worth? Before we jump into the how, we should examine the why.

Let's try to illustrate the motivation and utility of this :

function identify() {
return this.name.toUpperCase();

S

function speak() {
var greeting = "Hello, I'm " + identify.call(this);
.log(greeting);

var me = {
name: "Kyle"

+;

var you = {
name: "Reader"

+;

identify.call(me);
identify.call(you);

speak.call(me);
speak.call(you);

If the how of this snippet confuses you, don't worry! We'll get to that shortly. Just
set those questions aside briefly so we can look into the why more clearly.

This code snippet allows the identify() and speak() functions to be re-used
against multiple context (me and you) objects, rather than needing a separate
version of the function for each object.

Instead of relying on this , you could have explicitly passed in a context object to
both identify() and speak() .

function identify() {
return context.name.toUpperCase();
+
function speak() {
var greeting = "Hello, I'm " + identify(context);
.log(greeting);
+

identify(you);
speak(me);

However, the this mechanism provides a more elegant way of implicitly
"passing along" an object reference, leading to cleaner API design and easier re-
use.

The more complex your usage pattern is, the more clearly you'll see that passing
context around as an explicit parameter is often messier than passing around a
this context. When we explore objects and prototypes, you will see the

helpfulness of a collection of functions being able to automatically reference the
proper context object.

Confusions

We'll soon begin to explain how this actually works, but first we must dispel
some misconceptions about how it doesn't actually work.

The name "this" creates confusion when developers try to think about it too
literally. There are two meanings often assumed, but both are incorrect.

Itself

The first common temptation is to assume this refers to the function itself.
That's a reasonable grammatical inference, at least.

Why would you want to refer to a function from inside itself? The most common
reasons would be things like recursion (calling a function from inside itself) or
having an event handler that can unbind itself when it's first called.

Developers new to JS's mechanisms often think that referencing the function as
an object (all functions in JavaScript are objects!) lets you store state (values in
properties) between function calls. While this is certainly possible and has some
limited uses, the rest of the book will expound on many other patterns for better
places to store state besides the function object.

But for just a moment, we'll explore that pattern, to illustrate how this doesn't let
a function get a reference to itself like we might have assumed.

Consider the following code, where we attempt to track how many times a

function (foo) was called:

function foo(num) {
.log("foo: " + num);

this.count++;

+

foo.count = 0;

var i;

for (i=0; i<10; i++) {
if (1 >5) {

foo(i)

b

.log(foo.count);

foo.count is still @ , even though the four console.log statements clearly
indicate foo(..) was in fact called four times. The frustration stems from a too
literal interpretation of what this (in this.count++) means.

When the code executes foo.count = @ , indeed it's adding a property count to

the function object foo . But for the this.count reference inside of the function,
this is not in fact pointing at all to that function object, and so even though the
property names are the same, the root objects are different, and confusion

ensues.

Note: A responsible developer should ask at this point, "If | was incrementing a

count property but it wasn't the one | expected, which count was |
incrementing?" In fact, were she to dig deeper, she would find that she had
accidentally created a global variable count (see Chapter 2 for how that
happened!), and it currently has the value nan . Of course, once she identifies
this peculiar outcome, she then has a whole other set of questions: "How was it
global, and why did it end up NaN instead of some proper count value?" (see
Chapter 2).

Instead of stopping at this point and digging into why the this reference doesn't
seem to be behaving as expected, and answering those tough but important
questions, many developers simply avoid the issue altogether, and hack toward
some other solution, such as creating another object to hold the count property:

function foo(num) {
.log("foo:

+ num);

data.count++;

b

var data = {
count:
18

var i;

for (i=0; i<10; i++) {
if (1> 5) {
foo(i);
+

.log(data.count);

While it is true that this approach "solves" the problem, unfortunately it simply
ignores the real problem -- lack of understanding what this means and how it
works -- and instead falls back to the comfort zone of a more familiar mechanism:
lexical scope.

Note: Lexical scope is a perfectly fine and useful mechanism; | am not belittling
the use of it, by any means (see "Scope & Closures" title of this book series). But
constantly guessing at how to use this , and usually being wrong, is not a good
reason to retreat back to lexical scope and never learn why this eludes you.

To reference a function object from inside itself, this by itself will typically be
insufficient. You generally need a reference to the function object via a lexical
identifier (variable) that points at it.

Consider these two functions:

function foo() {
foo.count = 4;

S

setTimeout(function(){

Y)8

In the first function, called a "named function", foo is a reference that can be
used to refer to the function from inside itself.

But in the second example, the function callback passed to setTimeout(..) has
no name identifier (so called an "anonymous function"), so there's no proper way
to refer to the function object itself.

Note: The old-school but now deprecated and frowned-upon arguments.callee
reference inside a function also points to the function object of the currently

executing function. This reference is typically the only way to access an

anonymous function's object from inside itself. The best approach, however, is to
avoid the use of anonymous functions altogether, at least for those which require
a self-reference, and instead use a named function (expression).
arguments.callee is deprecated and should not be used.

So another solution to our running example would have been to use the foo
identifier as a function object reference in each place, and not use this at all,
which works:

fun

foo

ction foo(num) {
.log("foo: " + num);

// keep track of how many times "“foo" is called
foo.count++;

.count = 03

var i;

for (i=0; i<10; i++) {

//
//
//
//

//

if (1> 5) {
foo(i);
+
foo: 6
foo: 7
foo: 8
foo: 9

how many times was “foo" called?
.log(foo.count); // 4

However, that approach similarly side-steps actual understanding of this and

relies entirely on the lexical scoping of variable foo .

Yet another way of approaching the issue is to force this to actually point at the

foo

fun

foo.

var

for

//
//
//
//

//

function object:

ction foo(num) {
.log("foo: " + num);

// keep track of how many times "“foo™ is called
// Note: “this® IS actually "foo' now, based on
// how “foo' is called (see below)
this.count++;

count = 03
i;

(i=0; i<10; i++) {

if (1 >5) {
// using “call(..), we ensure the "this’
// points at the function object (" foo') itself
foo.call(foo, i);

foo:
foo:
foo:
foo:

O 00 N O

how many times was “foo"™ called?
.log(foo.count); // 4

Instead of avoiding this , we embrace it. We'll explain in a little bit how such

techn
confu

iqgues work much more completely, so don't worry if you're still a bit
sed!

Its Scope

The next most common misconception about the meaning of this is that it
somehow refers to the function's scope. It's a tricky question, because in one
sense there is some truth, but in the other sense, it's quite misguided.

To be clear, this does not, in any way, refer to a function's lexical scope. It is
true that internally, scope is kind of like an object with properties for each of the
available identifiers. But the scope "object" is not accessible to JavaScript code.
It's an inner part of the Engine's implementation.

Consider code which attempts (and fails!) to cross over the boundary and use
this to implicitly refer to a function's lexical scope:

function foo() {

var a = 2;
this.bar();
+
function bar() {
.log(this.a);
+
foo();

There's more than one mistake in this snippet. While it may seem contrived, the
code you see is a distillation of actual real-world code that has been exchanged in
public community help forums. It's a wonderful (if not sad) illustration of just how
misguided this assumptions can be.

Firstly, an attempt is made to reference the bar() function via this.bar() . Itis
almost certainly an accident that it works, but we'll explain the how of that shortly.
The most natural way to have invoked bar() would have been to omit the
leading this. and just make a lexical reference to the identifier.

However, the developer who writes such code is attempting to use this to
create a bridge between the lexical scopes of foo() and bar() , so that bar()
has access to the variable a in the inner scope of foo() . No such bridge is
possible. You cannot use a this reference to look something up in a lexical
scope. It is not possible.

Every time you feel yourself trying to mix lexical scope look-ups with this ,
remind yourself: there is no bridge.

What's this ?

Having set aside various incorrect assumptions, let us now turn our attention to
how the this mechanism really works.

We said earlier that this is not an author-time binding but a runtime binding. It is
contextual based on the conditions of the function's invocation. this binding has
nothing to do with where a function is declared, but has instead everything to do
with the manner in which the function is called.

When a function is invoked, an activation record, otherwise known as an
execution context, is created. This record contains information about where the
function was called from (the call-stack), how the function was invoked, what
parameters were passed, etc. One of the properties of this record is the this
reference which will be used for the duration of that function's execution.

In the next chapter, we will learn to find a function's call-site to determine how its
execution will bind this .

Review (TL;DR)

this binding is a constant source of confusion for the JavaScript developer who

does not take the time to learn how the mechanism actually works. Guesses, trial-
and-error, and blind copy-n-paste from Stack Overflow answers is not an effective
or proper way to leverage this important this mechanism.

To learn this , you first have to learn what this is not, despite any assumptions
or misconceptions that may lead you down those paths. this is neither a
reference to the function itself, nor is it a reference to the function's lexical scope.

this is actually a binding that is made when a function is invoked, and what it
references is determined entirely by the call-site where the function is called.

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Chapter 2: this All Makes Sense
Now!

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

In Chapter 1, we discarded various misconceptions about this and learned
instead that this is a binding made for each function invocation, based entirely
on its call-site (how the function is called).

Call-site

To understand this binding, we have to understand the call-site: the location in
code where a function is called (not where it's declared). We must inspect the
call-site to answer the question: what's this this a reference to?

Finding the call-site is generally: "go locate where a function is called from", but
it's not always that easy, as certain coding patterns can obscure the true call-site.

What's important is to think about the call-stack (the stack of functions that have
been called to get us to the current moment in execution). The call-site we care
about is in the invocation before the currently executing function.

Let's demonstrate call-stack and call-site:

function baz() {

.log("baz");
bar();
+

function bar() {

.log("bar");
foo();
+

function foo() {

.log("foo");
+

baz();

Take care when analyzing code to find the actual call-site (from the call-stack),
because it's the only thing that matters for this binding.

Note: You can visualize a call-stack in your mind by looking at the chain of
function calls in order, as we did with the comments in the above snippet. But this
is painstaking and error-prone. Another way of seeing the call-stack is using a
debugger tool in your browser. Most modern desktop browsers have built-in
developer tools, which includes a JS debugger. In the above snippet, you could
have set a breakpoint in the tools for the first line of the foo() function, or simply
inserted the debugger; statement on that first line. When you run the page, the
debugger will pause at this location, and will show you a list of the functions that
have been called to get to that line, which will be your call stack. So, if you're
trying to diagnose this binding, use the developer tools to get the call-stack,
then find the second item from the top, and that will show you the real call-site.

Nothing But Rules

We turn our attention now to how the call-site determines where this will point
during the execution of a function.

You must inspect the call-site and determine which of 4 rules applies. We will first
explain each of these 4 rules independently, and then we will illustrate their order
of precedence, if multiple rules could apply to the call-site.

Default Binding

The first rule we will examine comes from the most common case of function
calls: standalone function invocation. Think of this this rule as the default catch-
all rule when none of the other rules apply.

Consider this code:

function foo() {
.log(this.a);
+

var a = 2;

foo();

The first thing to note, if you were not already aware, is that variables declared in

the global scope, as var a = 2 s, are synonymous with global-object properties

of the same name. They're not copies of each other, they are each other. Think of
it as two sides of the same coin.

Secondly, we see that when foo() is called, this.a resolves to our global
variable a . Why? Because in this case, the default binding for this applies to
the function call, and so points this at the global object.

How do we know that the default binding rule applies here? We examine the call-
site to see how foo() is called. In our snippet, foo() is called with a plain, un-
decorated function reference. None of the other rules we will demonstrate will
apply here, so the default binding applies instead.

If strict mode is in effect, the global object is not eligible for the default binding,

so the this isinstead setto undefined .

function foo() {

.log(this.a);

var a = 2;

foo();

A subtle but important detail is: even though the overall this binding rules are
entirely based on the call-site, the global object is only eligible for the default
binding if the contents of foo() are notrunningin strict mode ; the strict
mode state of the call-site of foo() is irrelevant.

function foo() {
.log(this.a);
+

var a = Z;

(function(){

foo();
HO;

Note: Intentionally mixing strict mode and non- strict mode together in your
own code is generally frowned upon. Your entire program should probably either
be Strict or non-Strict. However, sometimes you include a third-party library that
has different Strict'ness than your own code, so care must be taken over these
subtle compatibility details.

Implicit Binding

Another rule to consider is: does the call-site have a context object, also referred
to as an owning or containing object, though these alternate terms could be
slightly misleading.

Consider:

function foo() {

.log(this.a);
+
var obj = {
a: 2,
foo: foo
Y
obj.foo();

Firstly, notice the manner in which foo() is declared and then later added as a
reference property onto obj . Regardless of whether foo() is initially declared
on obj , oris added as a reference later (as this snippet shows), in neither case
is the function really "owned" or "contained" by the obj object.

However, the call-site uses the obj context to reference the function, so you
could say that the obj object "owns" or "contains" the function reference at the
time the function is called.

Whatever you choose to call this pattern, at the point that foo() is called, it's
preceded by an object reference to obj . When there is a context object for a
function reference, the implicit binding rule says that it's that object which should
be used for the function call's this binding.

Because obj isthe this forthe foo() call, this.a is synonymous with

obj.a .

Only the top/last level of an object property reference chain matters to the call-
site. For instance:

function foo() {
.log(this.a);

+

var obj2 = {
a: ,
foo: foo

+;

var objl = {
a: 2,
obj2: obj2

+;

objl.0bj2.foo();

Implicitly Lost

One of the most common frustrations that this binding creates is when an
implicitly bound function loses that binding, which usually means it falls back to
the default binding, of either the global object or undefined , depending on

strict mode .

Consider:

function foo() {
.log(this.a);

+

var obj = {
a: 2,
foo: foo

+

var bar = obj.foo;
var a = "oops, global";

bar();

Even though bar appears to be a reference to obj.foo , in fact, it's really just
another reference to foo itself. Moreover, the call-site is what matters, and the
call-site is bar() , which is a plain, un-decorated call and thus the default binding
applies.

The more subtle, more common, and more unexpected way this occurs is when
we consider passing a callback function:

function foo() {
.log(this.a);
¥

function doFoo(fn) {

fn();

var obj = {

foo: foo
18

var a = "oops, global";

doFoo(obj.foo);

Parameter passing is just an implicit assignment, and since we're passing a
function, it's an implicit reference assignment, so the end result is the same as the
previous snippet.

What if the function you're passing your callback to is not your own, but built-in to
the language? No difference, same outcome.

function foo() {
.log(this.a);

+
var obj = {
a: 2,
foo: foo
Y
var a = "oops, global";
setTimeout(obj.foo, Dk

Think about this crude theoretical pseudo-implementation of setTimeout()
provided as a built-in from the JavaScript environment:

function setTimeout() {

fn();

It's quite common that our function callbacks lose their this binding, as we've
just seen. But another way that this can surprise us is when the function we've
passed our callback to intentionally changes the this for the call. Event
handlers in popular JavaScript libraries are quite fond of forcing your callback to
have a this which points to, for instance, the DOM element that triggered the
event. While that may sometimes be useful, other times it can be downright
infuriating. Unfortunately, these tools rarely let you choose.

Either way the this is changed unexpectedly, you are not really in control of
how your callback function reference will be executed, so you have no way (yet)
of controlling the call-site to give your intended binding. We'll see shortly a way of
"fixing" that problem by fixing the this .

Explicit Binding

With implicit binding as we just saw, we had to mutate the object in question to
include a reference on itself to the function, and use this property function
reference to indirectly (implicitly) bind this to the object.

But, what if you want to force a function call to use a particular object for the
this binding, without putting a property function reference on the object?

"All" functions in the language have some utilities available to them (via their

[[Prototypel] -- more on that later) which can be useful for this task.
Specifically, functions have call(..) and apply(..) methods. Technically,
JavaScript host environments sometimes provide functions which are special
enough (a kind way of putting it!) that they do not have such functionality. But
those are few. The vast majority of functions provided, and certainly all functions
you will create, do have access to call(..) and apply(..) .

How do these utilities work? They both take, as their first parameter, an object to
use for the this , and then invoke the function with that this specified. Since
you are directly stating what you want the this to be, we call it explicit binding.

Consider:

function foo() {
.log(this.a);

foo.call(obj);

Invoking foo with explicit binding by foo.call(..) allows us to force its this
to be obj .

If you pass a simple primitive value (of type string , boolean , Or number) as the
this binding, the primitive value is wrapped in its object-form (new String(..) ,

new Boolean(..) , Or new Number(..) , respectively). This is often referred to as
"boxing".
Note: With respect to this binding, call(..) and apply(..) are identical.

They do behave differently with their additional parameters, but that's not
something we care about presently.

Unfortunately, explicit binding alone still doesn't offer any solution to the issue
mentioned previously, of a function "losing" its intended this binding, or just
having it paved over by a framework, etc.

Hard Binding

But a variation pattern around explicit binding actually does the trick. Consider:

function foo() {
.log(this.a);

<
o
=S
o
- o
.
I
-~

var bar = function() {
foo.call(obj);
+;

bar();
setTimeout(bar,)3

bar.call()8

Let's examine how this variation works. We create a function bar() which,
internally, manually calls foo.call(obj) , thereby forcibly invoking foo with obj
binding for this . No matter how you later invoke the function bar , it will always
manually invoke foo with obj . This binding is both explicit and strong, so we
call it hard binding.

The most typical way to wrap a function with a hard binding creates a pass-thru of
any arguments passed and any return value received:

function foo() {
.log(this.a, something);
return this.a + something;

S

1
-~

var obj
a:

+i
var bar = function() {
return foo.apply(obj,);
+
var b = bar(3);

.log(b);

Another way to express this pattern is to create a re-usable helper:

function foo() {
.log(this.a, something);
return this.a + something;

function bind() {
return function() {
return fn.apply(obj, D8
I

<
)
=S5
o
- o
farl
1}
-~

var bar = bind(foo, obj);

var b = bar(DB
.log(b);

Since hard binding is such a common pattern, it's provided with a built-in utility as
of ES5: Function.prototype.bind , and it's used like this:

function foo() {
.log(this.a, something);
return this.a + something;

+

var obj = {
a:

g

var bar = foo.bind(obj);

var b = bar(3);
.log(b);

bind(..) returns a new function that is hard-coded to call the original function
with the this context set as you specified.

Note: As of ES6, the hard-bound function produced by bind(..) hasa .name
property that derives from the original target function. For example: bar =
foo.bind(..) should have a bar.name value of "bound foo" , which is the
function call name that should show up in a stack trace.

API Call "Contexts"

Many libraries' functions, and indeed many new built-in functions in the JavaScript
language and host environment, provide an optional parameter, usually called
"context", which is designed as a work-around for you not having to use

bind(..) to ensure your callback function uses a particular this .

For instance:

function foo(el) {
.log(el, this.id);

+
var obj = {

id: "awesome"
b

[1, 2, 3].forEach(foo, obj);

Internally, these various functions almost certainly use explicit binding via
call(..) or apply(..) , saving you the trouble.

new Binding

The fourth and final rule for this binding requires us to re-think a very common
misconception about functions and objects in JavaScript.

In traditional class-oriented languages, "constructors" are special methods
attached to classes, that when the class is instantiated with a new operator, the
constructor of that class is called. This usually looks something like:

something = new MyClass(..);

JavaScript has a new operator, and the code pattern to use it looks basically
identical to what we see in those class-oriented languages; most developers
assume that JavaScript's mechanism is doing something similar. However, there
really is no connection to class-oriented functionality implied by new usage in JS.

First, let's re-define what a "constructor" in JavaScript is. In JS, constructors are
just functions that happen to be called with the new operator in front of them.
They are not attached to classes, nor are they instantiating a class. They are not
even special types of functions. They're just regular functions that are, in essence,
hijacked by the use of new in their invocation.

For example, the Number(..) function acting as a constructor, quoting from the
ES5.1 spec:

15.7.2 The Number Constructor

When Number is called as part of a new expression it is a constructor: it
initialises the newly created object.

So, pretty much any ol' function, including the built-in object functions like
Number(..) (see Chapter 3) can be called with new in front of it, and that makes
that function call a constructor call. This is an important but subtle distinction:
there's really no such thing as "constructor functions”, but rather construction calls
of functions.

When a function is invoked with new in front of it, otherwise known as a
constructor call, the following things are done automatically:

1. a brand new object is created (aka, constructed) out of thin air

2. the newly constructed object is [[Prototype]] -linked

3. the newly constructed object is set as the this binding for that function call

4. unless the function returns its own alternate object, the new -invoked
function call will automatically return the newly constructed object.

Steps 1, 3, and 4 apply to our current discussion. We'll skip over step 2 for now
and come back to it in Chapter 5.

Consider this code:

function foo(a) {
this.a = a;

}

var bar = new foo(2);
.log(bar.a);

By calling foo(..) with new in front of it, we've constructed a new object and
set that new object as the this for the call of foo(..) . So new is the final
way that a function call's this can be bound. We'll call this new binding.

Everything In Order

So, now we've uncovered the 4 rules for binding this in function calls. All you
need to do is find the call-site and inspect it to see which rule applies. But, what if
the call-site has multiple eligible rules? There must be an order of precedence to
these rules, and so we will next demonstrate what order to apply the rules.

It should be clear that the default binding is the lowest priority rule of the 4. So
we'll just set that one aside.

Which is more precedent, implicit binding or explicit binding? Let's test it:

function foo() {
.log(this.a);

+

var objl = {
a: 2,
foo: foo

+

var obj2 = {
a: 3,
foo: foo

g

obj1.foo();
obj2.foo();

obj1.foo.call(obj2);

obj2.foo.call(objl);

So, explicit binding takes precedence over implicit binding, which means you
should ask first if explicit binding applies before checking for implicit binding.

Now, we just need to figure out where new binding fits in the precedence.

function fool) {
this.a = something;

I

var objl = {
foo: foo
Y

var obj2 = {};

objl.foo(2);
.log(objl.a);

obj1.foo.call(obj2, D8
.log(obj2.a);

var bar = new objl.foo(4);
.log(objl.a);
.log(bar.a);

OK, new binding is more precedent than implicit binding. But do you think new
binding is more or less precedent than explicit binding?

Note: new and call/ apply cannot be used together, sO new foo.call(obj1)
is not allowed, to test new binding directly against explicit binding. But we can still
use a hard binding to test the precedence of the two rules.

Before we explore that in a code listing, think back to how hard binding physically
works, which is that Function.prototype.bind(..) creates a new wrapper function
that is hard-coded to ignore its own this binding (whatever it may be), and use
a manual one we provide.

By that reasoning, it would seem obvious to assume that hard binding (which is a
form of explicit binding) is more precedent than new binding, and thus cannot be
overridden with new .

Let's check:

function foo() {
this.a = something;

+
var objl = {};

var bar = foo.bind(objl);
bar(2);
.log(objl.a);

var baz = new bar(0k
.log(objl.a);
.log(baz.a);

Whoa! bar is hard-bound against obj1 , but new bar(3) did not change
objl.a tobe 3 as we would have expected. Instead, the hard bound (to obj1)
callto bar(..) is able to be overridden with new . Since new was applied, we

got the newly created object back, which we named baz , and we see in fact that
baz.a has the value 3.

This should be surprising if you go back to our "fake" bind helper:

function bind() {
return function() {
fn.apply(obj, DB
I
+

If you reason about how the helper's code works, it does not have a way for a
new operator call to override the hard-binding to obj as we just observed.

But the built-in Function.prototype.bind(..) as of ES5 is more sophisticated,
quite a bit so in fact. Here is the (slightly reformatted) polyfill provided by the MDN
page for bind(..) :

if (! .prototype.bind) {
.prototype.bind = function() {
if (typeof this !== "function") {

// closest thing possible to the ECMAScript 5

// internal IsCallable function

throw new ("Function.prototype.bind — what " +
"is trying to be bound is not callable"

);

var aArgs = .prototype.slice.call(f D
fToBind = this,
fNOP = function(){},
fBound = function(){
return fToBind.apply(
(
this instanceof fNOP &&
oThis ? this : oThis
),
aArgs.concat(.prototype.slice.call())
);

fNOP.prototype = this.prototype;
fBound.prototype = new fNOP();

return fBound;

Note: The bind(..) polyfill shown above differs from the built-in bind(..) in
ES5 with respect to hard-bound functions that will be used with new (see below
for why that's useful). Because the polyfill cannot create a function without a

.prototype as the built-in utility does, there's some nuanced indirection to
approximate the same behavior. Tread carefully if you plan to use new with a
hard-bound function and you rely on this polyfill.

The part that's allowing new overriding is:

this instanceof fNOP &&
oThis ? this : oThis

fNOP.prototype = this.prototype;
fBound.prototype = new fNOP();

We won't actually dive into explaining how this trickery works (it's complicated and
beyond our scope here), but essentially the utility determines whether or not the
hard-bound function has been called with new (resulting in a newly constructed
object being its this), and if so, it uses that newly created this rather than the
previously specified hard binding for this .

Why is new being able to override hard binding useful?

The primary reason for this behavior is to create a function (that can be used with
new for constructing objects) that essentially ignores the this hard binding but
which presets some or all of the function's arguments. One of the capabilities of
bind(..) is that any arguments passed after the first this binding argument
are defaulted as standard arguments to the underlying function (technically called
"partial application", which is a subset of "currying").

For example:
function foo() {
this.val = pl + p2;
+
var bar = foo.bind(, "pl")

var baz = new bar("p2");

baz.val;

Determining this

Now, we can summarize the rules for determining this from a function call's
call-site, in their order of precedence. Ask these questions in this order, and stop
when the first rule applies.

1. Is the function called with new (new binding)? If so, this is the newly
constructed object.

var bar = new foo()

2. Is the function called with call or apply (explicit binding), even hidden
inside a bind hard binding? If so, this is the explicitly specified object.

var bar = foo.call(obj2)

3. Is the function called with a context (implicit binding), otherwise known as
an owning or containing object? If so, this is that context object.

var bar = objl.foo()

4. Otherwise, default the this (default binding). If in strict mode , pick
undefined , otherwise pick the global object.

var bar = foo()

That's it. That's all it takes to understand the rules of this binding for normal
function calls. Well... almost.

Binding Exceptions

As usual, there are some exceptions to the "rules".

The this -binding behavior can in some scenarios be surprising, where you
intended a different binding but you end up with binding behavior from the default
binding rule (see previous).

Ignored this

If you pass null or undefined as a this binding parameterto call, apply,
or bind , those values are effectively ignored, and instead the default binding rule
applies to the invocation.

function foo() {
.log(this.a);
}

var a = 2;

foo.call(DE

Why would you intentionally pass something like null fora this binding?

It's quite common to use apply(..) for spreading out arrays of values as
parameters to a function call. Similarly, bind(..) can curry parameters (pre-set
values), which can be very helpful.

function foo() {
.log("a:" +a+ ", b:" +b);

+

foo.apply(, [2, 31);

var bar = foo.bind(D D
bar()

Both these utilities require a this binding for the first parameter. If the functions
in question don't care about this , you need a placeholder value, and null
might seem like a reasonable choice as shown in this snippet.

Note: We don't cover it in this book, but ES6 has the ... spread operator which
will let you syntactically "spread out" an array as parameters without needing
apply(..) ,such as foo(...[1,2]) , which amounts to foo(1,2) -- syntactically
avoiding a this binding if it's unnecessary. Unfortunately, there's no ES6
syntactic substitute for currying, so the this parameter of the bind(..) call still
needs attention.

However, there's a slight hidden "danger” in always using null when you don't
care about the this binding. If you ever use that against a function call (for
instance, a third-party library function that you don't control), and that function
does make a this reference, the default binding rule means it might
inadvertently reference (or worse, mutate!) the global object (window in the
browser).

Obviously, such a pitfall can lead to a variety of very difficult to diagnose/track-
down bugs.

Safer this

Perhaps a somewhat "safer" practice is to pass a specifically set up object for

this which is guaranteed not to be an object that can create problematic side
effects in your program. Borrowing terminology from networking (and the military),
we can create a "DMZ" (de-militarized zone) object -- nothing more special than a
completely empty, non-delegated (see Chapters 5 and 6) object.

If we always pass a DMZ object for ignored this bindings we don't think we
need to care about, we're sure any hidden/unexpected usage of this will be
restricted to the empty object, which insulates our program's global object from
side-effects.

Since this object is totally empty, | personally like to give it the variable name o
(the lowercase mathematical symbol for the empty set). On many keyboards (like
US-layout on Mac), this symbol is easily typed with x + o (option+ o). Some
systems also let you set up hotkeys for specific symbols. If you don't like the o
symbol, or your keyboard doesn't make that as easy to type, you can of course
call it whatever you want.

Whatever you call it, the easiest way to set it up as totally empty is
Object.create(null) (see Chapter 5). oObject.create(null) is similarto { },
but without the delegation to object.prototype , SO it's "more empty" than just {
I 8

function foo(a,b) {
.log("a:" +a+ ", b:" +b);

S

var g = .create()5

foo.apply(&, [2, 31);

var bar = foo.bind(g, DB
bar(3);

Not only functionally "safer", there's a sort of stylistic benefitto g , in that it
semantically conveys "l want the this to be empty" a little more clearly than
null might. But again, name your DMZ object whatever you prefer.

Indirection

Another thing to be aware of is you can (intentionally or not!) create "indirect
references" to functions, and in those cases, when that function reference is
invoked, the default binding rule also applies.

One of the most common ways that indirect references occur is from an
assignment:

function foo() {
.log(this.a);
¥

var a ;
{ , foo: foo };
{

var o = a
a: 4 };

var p

o.foo();
(p.foo = 0.foo)();

The result value of the assignment expression p.foo = o.foo is a reference to
just the underlying function object. As such, the effective call-site is just foo() ,
not p.foo() or o.foo() asyou might expect. Per the rules above, the default
binding rule applies.

Reminder: regardless of how you get to a function invocation using the default
binding rule, the strict mode status of the contents of the invoked function
making the this reference -- not the function call-site -- determines the default
binding value: either the global object if in non- strict mode or undefined if in

strict mode .

Softening Binding

We saw earlier that hard binding was one strategy for preventing a function call
falling back to the default binding rule inadvertently, by forcing it to be bound to a
specific this (unless you use new to override it!). The problem is, hard-binding

greatly reduces the flexibility of a function, preventing manual this override with
either the implicit binding or even subsequent explicit binding attempts.

It would be nice if there was a way to provide a different default for default binding
(not global or undefined), while still leaving the function able to be manually
this bound via implicit binding or explicit binding techniques.

We can construct a so-called soft binding utility which emulates our desired
behavior.

if (! .prototype.softBind) {
.prototype.softBind = function() {
var fn = this,
curried = [].slice.call(D)y
bound = function bound() {
return fn.apply(

(!this ||
(typeof I== "undefined" &&
this ===) |
(typeof global !== "undefined" &&
this === global)
) ? obj : this,
curried.concat.apply(curried,)
);
18
bound.prototype = .create(fn.prototype)

return bound;
+;

The softBind(..) utility provided here works similarly to the built-in ES5
bind(..) utility, except with our soft binding behavior. It wraps the specified
function in logic that checks the this at call-time and if it's global or
undefined , uses a pre-specified alternate default (obj). Otherwise the this is
left untouched. It also provides optional currying (see the bind(..) discussion
earlier).

Let's demonstrate its usage:

function foo() {
.log("name: " + this.name);

var obj = { name: "obj" },
obj2 = { name: "obj2" },
obj3 = { name: "obj3" };
var fooOBJ = foo.softBind(obj);

foo0BJ(); // name: obj

obj2.foo = foo.softBind(obj);
obj2.foo(); // name: obj2 <———— Tlook!!!

foo0BJ.call(obj3); // name: obj3 <-——— look!

setTimeout(obj2.foo,); // name: obj <-———— falls back to soft-binding

The soft-bound version of the foo() function can be manually this -bound to
obj2 or obj3 as shown, but it falls back to obj if the default binding would
otherwise apply.

Lexical this

Normal functions abide by the 4 rules we just covered. But ES6 introduces a
special kind of function that does not use these rules: arrow-function.

Arrow-functions are signified not by the function keyword, but by the => so
called "fat arrow" operator. Instead of using the four standard this rules, arrow-
functions adopt the this binding from the enclosing (function or global) scope.

Let's illustrate arrow-function lexical scope:

function foo() {
return (a) => {

.log(this.a);

HH

+

var objl = {
a:

I

var obj2 = {
a:

+;

var bar = foo.call(objl);
bar.call(obj2);

The arrow-function created in foo() lexically captures whatever foo() s this
is at its call-time. Since foo() was this -bound to obj1, bar (a reference to
the returned arrow-function) will also be this -bound to obj1 . The lexical
binding of an arrow-function cannot be overridden (even with new !).

The most common use-case will likely be in the use of callbacks, such as event

handlers or timers:

function foo() {
setTimeout(() => {

.log(this.a);

},100);
+
var obj = {
a:
+;

foo.call(obj);

While arrow-functions provide an alternative to using bind(..) on a function to
ensure its this , which can seem attractive, it's important to note that they
essentially are disabling the traditional this mechanism in favor of more widely-
understood lexical scoping. Pre-ES6, we already have a fairly common pattern for
doing so, which is basically almost indistinguishable from the spirit of ES6 arrow-
functions:

function foo() {
var self = this;
setTimeout(function(){

.log(self.a);
Do);
+
var obj = {
a:
I

foo.call(obj);

While self = this and arrow-functions both seem like good "solutions" to not
wanting to use bind(..) , they are essentially fleeing from this instead of
understanding and embracing it.

If you find yourself writing this -style code, but most or all the time, you defeat
the this mechanism with lexical self = this or arrow-function "tricks", perhaps
you should either:

1. Use only lexical scope and forget the false pretense of this -style code.

2. Embrace this -style mechanisms completely, including using bind(..)
where necessary, and try to avoid self = this and arrow-function "lexical
this" tricks.

A program can effectively use both styles of code (lexical and this), but inside
of the same function, and indeed for the same sorts of look-ups, mixing the two
mechanisms is usually asking for harder-to-maintain code, and probably working
too hard to be clever.

Review (TL;DR)

Determining the this binding for an executing function requires finding the direct
call-site of that function. Once examined, four rules can be applied to the call-site,
in this order of precedence:

1. Called with new ? Use the newly constructed object.
2. Called with call or apply (or bind)? Use the specified object.
3. Called with a context object owning the call? Use that context object.

4. Default: undefined in strict mode , global object otherwise.

Be careful of accidental/unintentional invoking of the default binding rule. In cases
where you want to "safely" ignore a this binding, a "DMZ" object like ¢ =
Object.create(null) is a good placeholder value that protects the global object
from unintended side-effects.

Instead of the four standard binding rules, ES6 arrow-functions use lexical
scoping for this binding, which means they adopt the this binding (whatever
it is) from its enclosing function call. They are essentially a syntactic replacement
of self = this in pre-ES6 coding.

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Chapter 3: Objects

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

In Chapters 1 and 2, we explained how the this binding points to various
objects depending on the call-site of the function invocation. But what exactly are
objects, and why do we need to point to them? We will explore objects in detail in
this chapter.

Syntax

Objects come in two forms: the declarative (literal) form, and the constructed
form.

The literal syntax for an object looks like this:

var myObj = {
key: value

The constructed form looks like this:

var myObj = new 0);
myObj.key = value;

The constructed form and the literal form result in exactly the same sort of object.
The only difference really is that you can add one or more key/value pairs to the
literal declaration, whereas with constructed-form objects, you must add the
properties one-by-one.

Note: It's extremely uncommon to use the "constructed form" for creating objects
as just shown. You would pretty much always want to use the literal syntax form.
The same will be true of most of the built-in objects (see below).

Type

Objects are the general building block upon which much of JS is built. They are
one of the 6 primary types (called "language types" in the specification) in JS:

e string

e number

e boolean

e null

e undefined

e object

Note that the simple primitives (string , number , boolean , null, and
undefined) are not themselves objects . null is sometimes referred to as an
object type, but this misconception stems from a bug in the language which
causes typeof null to return the string "object" incorrectly (and confusingly).
In fact, null is its own primitive type.

It's a common mis-statement that "everything in JavaScript is an object".
This is clearly not true.

By contrast, there are a few special object sub-types, which we can refer to as
complex primitives.

function is a sub-type of object (technically, a "callable object"). Functions in JS
are said to be "first class" in that they are basically just normal objects (with
callable behavior semantics bolted on), and so they can be handled like any other
plain object.

Arrays are also a form of objects, with extra behavior. The organization of
contents in arrays is slightly more structured than for general objects.

Built-in Objects

There are several other object sub-types, usually referred to as built-in objects.
For some of them, their names seem to imply they are directly related to their
simple primitives counter-parts, but in fact, their relationship is more complicated,
which we'll explore shortly.

e String
e Number
e Boolean

e Object

e Function

e Array

e Date

e RegExp
e Error

These built-ins have the appearance of being actual types, even classes, if you
rely on the similarity to other languages such as Java's string class.

But in JS, these are actually just built-in functions. Each of these built-in functions
can be used as a constructor (that is, a function call with the new operator -- see
Chapter 2), with the result being a newly constructed object of the sub-type in
question. For instance:

var strPrimitive = "I am a string";
typeof strPrimitive;
strPrimitive instanceof B

var strObject = new ("I am a string");
typeof strObject;
strObject instanceof B

.prototype.toString.call(strObject);

We'll see in detail in a later chapter exactly how the
Object.prototype.toString... bit works, but briefly, we can inspect the internal
sub-type by borrowing the base default tostring() method, and you can see it
reveals that strobject is an object that was in fact created by the String
constructor.

The primitive value "I am a string" is not an object, it's a primitive literal and
immutable value. To perform operations on it, such as checking its length,
accessing its individual character contents, etc, a Sstring object is required.

Luckily, the language automatically coerces a "string" primitive to a String
object when necessary, which means you almost never need to explicitly create
the Object form. It is strongly preferred by the majority of the JS community to
use the literal form for a value, where possible, rather than the constructed object
form.

Consider:

var strPrimitive = "I am a string";
.log(strPrimitive.length);

.log(strPrimitive.charAt(3));

In both cases, we call a property or method on a string primitive, and the engine
automatically coerces itto a string object, so that the property/method access
works.

The same sort of coercion happens between the number literal primitive 42 and
the new Number(42) object wrapper, when using methods like
42.359.toFixed(2) . Likewise for Boolean objects from "boolean" primitives.

null and undefined have no object wrapper form, only their primitive values.
By contrast, pate values can only be created with their constructed object form,
as they have no literal form counter-part.

Object S, Array S, Function S, and RegExp S (regular expressions) are all
objects regardless of whether the literal or constructed form is used. The
constructed form does offer, in some cases, more options in creation than the
literal form counterpart. Since objects are created either way, the simpler literal
form is almost universally preferred. Only use the constructed form if you need
the extra options.

Error oObjects are rarely created explicitly in code, but usually created
automatically when exceptions are thrown. They can be created with the
constructed form new Error(..) , butit's often unnecessary.

Contents

As mentioned earlier, the contents of an object consist of values (any type) stored
at specifically named locations, which we call properties.

It's important to note that while we say "contents" which implies that these values
are actually stored inside the object, that's merely an appearance. The engine
stores values in implementation-dependent ways, and may very well not store
them in some object container. What is stored in the container are these property
names, which act as pointers (technically, references) to where the values are
stored.

Consider:

var myObject = {
a:

I
myObject.a;

myObject["a"];

To access the value at the location a in myobject , we need to use either the .
operator orthe [1 operator. The .a syntax is usually referred to as "property”
access, whereas the ["a"] syntax is usually referred to as "key" access. In
reality, they both access the same location, and will pull out the same value, 2,
so the terms can be used interchangeably. We will use the most common term,
"property access" from here on.

The main difference between the two syntaxes is that the . operator requires an
Identifier compatible property name after it, whereas the [".."] syntax can
take basically any UTF-8/unicode compatible string as the name for the property.

To reference a property of the name "Super-Fun!", for instance, you would have to
use the ["Super-Fun!"] access syntax, as Super-Fun! is nota valid Identifier
property name.

Also, since the [".."] syntax uses a string's value to specify the location, this
means the program can programmatically build up the value of the string, such

as:

var wantA = B

var myObject = {
a:

+;

var idx;

if (wantA) {
idx = "a";

+

.log(myObject([idx]);

In objects, property names are always strings. If you use any other value besides
a string (primitive) as the property, it will first be converted to a string. This even
includes numbers, which are commonly used as array indexes, so be careful not
to confuse the use of numbers between objects and arrays.

var myObject = { };

myObject [] = "foo";
myObject[3] = "bar";
myObject [myObject] = "baz";

myObject["true"];
myObject["3"];
myObject[" [object Object]"]1;

Computed Property Names

The myobject[..] property access syntax we just described is useful if you need
to use a computed expression value as the key name, like myObject[prefix +
name] . But that's not really helpful when declaring objects using the object-literal
syntax.

ES6 adds computed property names, where you can specify an expression,
surrounded by a [] pair, in the key-name position of an object-literal
declaration:

var prefix = "foo";

var myObject = {
[prefix + "bar"]: "hello",
[prefix + "baz"l: "world"

3

myObject["foobar"];
myObject["foobaz"];

The most common usage of computed property names will probably be for ES6
Symbol s, which we will not be covering in detail in this book. In short, they're a
new primitive data type which has an opaque unguessable value (technically a
string value). You will be strongly discouraged from working with the actual
value of a symbol (which can theoretically be different between different JS
engines), so the name of the Symbol , like Symbol.Something (justa made up
name!), will be what you use:

var myObject = {
[.Something]l: "hello world"
+;

Property vs. Method

Some developers like to make a distinction when talking about a property access
on an object, if the value being accessed happens to be a function. Because it's
tempting to think of the function as belonging to the object, and in other
languages, functions which belong to objects (aka, "classes") are referred to as
"methods", it's not uncommon to hear, "method access" as opposed to "property
access".

The specification makes this same distinction, interestingly.

Technically, functions never "belong" to objects, so saying that a function that just
happens to be accessed on an object reference is automatically a "method"
seems a bit of a stretch of semantics.

It is true that some functions have this references in them, and that sometimes
these this references refer to the object reference at the call-site. But this
usage really does not make that function any more a "method" than any other
function, as this is dynamically bound at run-time, at the call-site, and thus its
relationship to the object is indirect, at best.

Every time you access a property on an object, that is a property access,
regardless of the type of value you get back. If you happen to get a function from
that property access, it's not magically a "method" at that point. There's nothing
special (outside of possible implicit this binding as explained earlier) about a
function that comes from a property access.

For instance:

function foo() {
.log("foo");
+

var someFoo = foo;

var myObject = {
someFoo: foo
+

foo;
someFoo0;

myObject.someFoo;

someFoo and myObject.someFoo are just two separate references to the same
function, and neither implies anything about the function being special or "owned"
by any other object. If foo() above was defined to have a this reference
inside it, that myobject.someFoo implicit binding would be the only observable
difference between the two references. Neither reference really makes sense to
be called a "method".

Perhaps one could argue that a function becomes a method, not at definition
time, but during run-time just for that invocation, depending on how it's called at
its call-site (with an object reference context or not -- see Chapter 2 for more
details). Even this interpretation is a bit of a stretch.

The safest conclusion is probably that "function" and "method" are
interchangeable in JavaScript.

Note: ES6 adds a super reference, which is typically going to be used with
class (see Appendix A). The way super behaves (static binding rather than
late binding as this) gives further weight to the idea that a function which is
super bound somewhere is more a "method" than "function". But again, these
are just subtle semantic (and mechanical) nuances.

Even when you declare a function expression as part of the object-literal, that
function doesn't magically belong more to the object -- still just multiple references
to the same function object:

var myObject = {
foo: function foo() {
.log("foo");
+
g

var someFoo = myObject.foo;
someFoo0;

myObject.foo;

Note: In Chapter 6, we will cover an ES6 short-hand for that foo: function foo()
{ .. } declaration syntax in our object-literal.

Arrays

Arrays also use the [1 access form, but as mentioned above, they have slightly
more structured organization for how and where values are stored (though still no
restriction on what type of values are stored). Arrays assume numeric indexing,
which means that values are stored in locations, usually called indices, at non-
negative integers, suchas o and 42 .

var myArray = ["foo", 42, "bar"]
myArray.length;
myArray[0];

myArray[2];

Arrays are objects, so even though each index is a positive integer, you can also
add properties onto the array:

var myArray = ["foo", , "bar" 1;

myArray.baz = "baz";

myArray. length;

myArray.baz;

Notice that adding named properties (regardless of . or [1 operator syntax)
does not change the reported 1ength of the array.

You could use an array as a plain key/value object, and never add any numeric
indices, but this is a bad idea because arrays have behavior and optimizations
specific to their intended use, and likewise with plain objects. Use objects to store
key/value pairs, and arrays to store values at numeric indices.

Be careful: If you try to add a property to an array, but the property name looks
like a number, it will end up instead as a numeric index (thus modifying the array

contents):
var myArray = ["foo", 42, "bar"]
myArray["3"] = "baz";

myArray. length;

myArray[3];

Duplicating Objects

One of the most commonly requested features when developers newly take up
the JavaScript language is how to duplicate an object. It would seem like there
should just be a built-in copy() method, right? It turns out that it's a little more
complicated than that, because it's not fully clear what, by default, should be the
algorithm for the duplication.

For example, consider this object:

function anotherFunction() { }

var anotherObject = {
@8

+;
var anotherArray = [];

var myObject = {
a: 2,
b: anotherObject,
c: anotherArray,
d: anotherFunction

+;

anotherArray.push(anotherObject, myObject);

What exactly should be the representation of a copy of myobject ?

Firstly, we should answer if it should be a shallow or deep copy. A shallow copy
would end up with a on the new object as a copy of the value 2 ,but b, c,
and d properties as just references to the same places as the references in the
original object. A deep copy would duplicate not only myobject , but
anotherObject and anotherArray . But then we have issues that anotherArray
has references to anotherobject and myObject in it, so those should also be
duplicated rather than reference-preserved. Now we have an infinite circular
duplication problem because of the circular reference.

Should we detect a circular reference and just break the circular traversal (leaving
the deep element not fully duplicated)? Should we error out completely?
Something in between?

Moreover, it's not really clear what "duplicating” a function would mean? There are
some hacks like pulling out the tostring() serialization of a function's source
code (which varies across implementations and is not even reliable in all engines
depending on the type of function being inspected).

So how do we resolve all these tricky questions? Various JS frameworks have
each picked their own interpretations and made their own decisions. But which of
these (if any) should JS adopt as the standard? For a long time, there was no
clear answer.

One subset solution is that objects which are JSON-safe (that is, can be serialized
to a JSON string and then re-parsed to an object with the same structure and
values) can easily be duplicated with:

var newObj = .parse(.stringify(someObj))

Of course, that requires you to ensure your object is JSON safe. For some
situations, that's trivial. For others, it's insufficient.

At the same time, a shallow copy is fairly understandable and has far less issues,
so ES6 has now defined object.assign(..) for this task. oObject.assign(..)
takes a target object as its first parameter, and one or more source objects as its
subsequent parameters. It iterates over all the enumerable (see below), owned
keys (immediately present) on the source object(s) and copies them (via =
assignment only) to farget. It also, helpfully, returns target, as you can see below:

var newObj = .assign({}, myObject);
newObj.a;

newObj.b === anotherObject;

newObj.c === anotherArray;

newObj.d === anotherFunction;

Note: In the next section, we describe "property descriptors" (property
characteristics) and show the use of 0Object.defineProperty(..) . The duplication
that occurs for object.assign(..) however is purely = style assignment, so any
special characteristics of a property (like writable) on a source object are not
preserved on the target object.

Property Descriptors

Prior to ES5, the JavaScript language gave no direct way for your code to inspect
or draw any distinction between the characteristics of properties, such as whether
the property was read-only or not.

But as of ES5, all properties are described in terms of a property descriptor.

Consider this code:

var myObject = {
a:

3

.getOwnPropertyDescriptor(myObject, "a");

As you can see, the property descriptor (called a "data descriptor" since it's only
for holding a data value) for our normal object property a is much more than just
its value of 2 .Itincludes 3 other characteristics: writable , enumerable , and

configurable .

While we can see what the default values for the property descriptor
characteristics are when we create a normal property, we can use
Object.defineProperty(..) toadd a new property, or modify an existing one (if
it's configurable !), with the desired characteristics.

For example:

var myObject = {};

.defineProperty(myObject, "a", {
value: 2,
writable: ,
configurable:)
enumerable:

)

myObject.a;

Using defineProperty(..) , we added the plain, normal a property to myObject
in a manually explicit way. However, you generally wouldn't use this manual
approach unless you wanted to modify one of the descriptor characteristics from
its normal behavior.

Writable

The ability for you to change the value of a property is controlled by writable .

Consider:

var myObject = {};

.defineProperty(myObject, "a", {
value: 2,
writable:)
configurable:)
enumerable:

)
myObject.a = 3;

myObject.a;

As you can see, our modification of the value silently failed. If we try in strict
mode , we get an error:

var myObject = {};

.defineProperty(myObject, "a", {
value: 2,
writable:)
configurable: ,
enumerable:

)

myObject.a = 3;

The TypeError tells us we cannot change a non-writable property.

Note: We will discuss getters/setters shortly, but briefly, you can observe that
writable:false means a value cannot be changed, which is somewhat
equivalent to if you defined a no-op setter. Actually, your no-op setter would need
to throw a TypeError when called, to be truly conformant to writable:false .

Configurable

As long as a property is currently configurable, we can modify its descriptor
definition, using the same defineProperty(..) utility.

var myObject = {
a:

+;

myObject.a = 3;
myObject.a;

.defineProperty(myObject, "a", {
value: 4,
writable: ,
configurable: ,
enumerable:

)

myObject.a;
myObject.a = 5;
myObject.a;

.defineProperty(myObject, "a", {
value: 6,
writable: 0
configurable: D
enumerable:
)

The final defineProperty(..) call results in a TypeError, regardless of strict
mode , if you attempt to change the descriptor definition of a non-configurable
property. Be careful: as you can see, changing configurable to false is a one-
way action, and cannot be undone!

Note: There's a nuanced exception to be aware of: even if the property is already
configurable:false , writable can always be changed from true to false
without error, but not back to true if already false .

Another thing configurable:false prevents is the ability to use the delete
operator to remove an existing property.

var myObject = {
a:
+;

myObject.a;
delete myObject.a;
myObject.a;

.defineProperty(myObject, "a", {
value: 2,
writable: ,
configurable: ,
enumerable:

)

myObject.a;
delete myObject.a;
myObject.a;

As you can see, the last delete call failed (silently) because we made the a
property non-configurable.

delete is only used to remove object properties (which can be removed) directly
from the object in question. If an object property is the last remaining reference to
some object/function, and you delete it, that removes the reference and now
that unreferenced object/function can be garbage collected. But, it is not proper to
think of delete as a tool to free up allocated memory as it does in other
languages (like C/C++). delete is just an object property removal operation --
nothing more.

Enumerable

The final descriptor characteristic we will mention here (there are two others,
which we deal with shortly when we discuss getter/setters) is enumerable .

The name probably makes it obvious, but this characteristic controls if a property
will show up in certain object-property enumerations, such as the for..in loop.

Setto false to keep it from showing up in such enumerations, even though it's

still completely accessible. Setto true to keep it present.

All normal user-defined properties are defaulted to enumerable , as this is most
commonly what you want. But if you have a special property you want to hide
from enumeration, set it to enumerable:false .

We'll demonstrate enumerability in much more detail shortly, so keep a mental
bookmark on this topic.

Immutability

It is sometimes desired to make properties or objects that cannot be changed
(either by accident or intentionally). ES5 adds support for handling that in a variety
of different nuanced ways.

It's important to note that all of these approaches create shallow immutability.
That is, they affect only the object and its direct property characteristics. If an
object has a reference to another object (array, object, function, etc), the contents
of that object are not affected, and remain mutable.

myImmutableObject. foo;
myImmutableObject.foo.push(DB
myImmutableObject. foo;

We assume in this snippet that myImmutableObject is already created and
protected as immutable. But, to also protect the contents of
myImmutableObject.foo (which is its own object -- array), you would also need to
make foo immutable, using one or more of the following functionalities.

Note: It is not terribly common to create deeply entrenched immutable objects in
JS programs. Special cases can certainly call for it, but as a general design
pattern, if you find yourself wanting to seal or freeze all your objects, you may

want to take a step back and reconsider your program design to be more robust
to potential changes in objects' values.

Object Constant

By combining writable:false and configurable:false , you can essentially
create a constant (cannot be changed, redefined or deleted) as an object
property, like:

var myObject = {};

.defineProperty(myObject, "FAVORITE_NUMBER", {
value: ,
writable:)
configurable:

Prevent Extensions

If you want to prevent an object from having new properties added to it, but
otherwise leave the rest of the object's properties alone, call

Object.preventExtensions(..)

var myObject = {
a:

+
.preventExtensions(myObject);
myObject.b = 3;

myObject.b;

In non-strict mode , the creation of b fails silently. In strict mode , it throws a
TypeError .

Seal

Object.seal(..) creates a "sealed" object, which means it takes an existing
object and essentially calls object.preventExtensions(..) onit, but also marks all
its existing properties as configurable:false .

So, not only can you not add any more properties, but you also cannot
reconfigure or delete any existing properties (though you can still modify their
values).

Freeze

Object.freeze(..) creates a frozen object, which means it takes an existing
object and essentially calls object.seal(..) onit, butit also marks all "data
accessor" properties as writable:false , so that their values cannot be changed.

This approach is the highest level of immutability that you can attain for an object
itself, as it prevents any changes to the object or to any of its direct properties
(though, as mentioned above, the contents of any referenced other objects are

unaffected).
You could "deep freeze" an object by calling object.freeze(..) on the object,
and then recursively iterating over all objects it references (which would have
been unaffected thus far), and calling object.freeze(..) on them as well. Be
careful, though, as that could affect other (shared) objects you're not intending to
affect.

[[Get]]
There's a subtle, but important, detail about how property accesses are
performed.
Consider:

var myObject = {
a:

+;

myObject.a;

The myobject.a is a property access, but it doesn't just look in myobject fora
property of the name a , as it might seem.

According to the spec, the code above actually performs a [[Get]] operation
(kinda like a function call: [[Get]11()) onthe myoObject . The default built-in

[[Get]] operation for an object first inspects the object for a property of the
requested name, and if it finds it, it will return the value accordingly.

However, the [[Get]] algorithm defines other important behavior if it does not
find a property of the requested name. We will examine in Chapter 5 what
happens next (traversal of the [[Prototypell chain, if any).

But one important result of this [[Get]] operation is that if it cannot through any
means come up with a value for the requested property, it instead returns the
value undefined .

var myObject = {
a:

4

myObject.b;

This behavior is different from when you reference variables by their identifier
names. If you reference a variable that cannot be resolved within the applicable
lexical scope look-up, the result is not undefined as it is for object properties, but
instead a ReferenceError is thrown.

var myObject = {
a:

g
myObject.a;

myObject.b;

From a value perspective, there is no difference between these two references --
they both result in undefined . However, the [[Get]] operation underneath,
though subtle at a glance, potentially performed a bit more "work" for the
reference myobject.b than for the reference myobject.a .

Inspecting only the value results, you cannot distinguish whether a property exists
and holds the explicit value undefined , or whether the property does not exist
and undefined was the default return value after [[Get]] failed to return
something explicitly. However, we will see shortly how you can distinguish these
two scenarios.

[[Put]]

Since there's an internally defined [[Get]] operation for getting a value from a
property, it should be obvious there's also a default [[Put]] operation.

It may be tempting to think that an assignment to a property on an object would
justinvoke [[putl]l to set or create that property on the object in question. But
the situation is more nuanced than that.

When invoking [[Putl] , how it behaves differs based on a number of factors,
including (most impactfully) whether the property is already present on the object
or not.

If the property is present, the [[putl] algorithm will roughly check:

1. Is the property an accessor descriptor (see "Getters & Setters" section
below)? If so, call the setter, if any.

2. Is the property a data descriptor with writable of false ? If so, silently fail
in non-strict mode , or throw TypeError in strict mode .

3. Otherwise, set the value to the existing property as normal.

If the property is not yet present on the object in question, the [[Put]] operation
is even more nuanced and complex. We will revisit this scenario in Chapter 5
when we discuss [[Prototypel] to give it more clarity.

Getters & Setters

The default [[Put]l] and [I[Get]l] operations for objects completely control how
values are set to existing or new properties, or retrieved from existing properties,
respectively.

Note: Using future/advanced capabilities of the language, it may be possible to
override the default [[Get]] or [[Put]l] operations for an entire object (not just
per property). This is beyond the scope of our discussion in this book, but will be

covered later in the "You Don't Know JS" series.

ES5 introduced a way to override part of these default operations, not on an
object level but a per-property level, through the use of getters and setters.
Getters are properties which actually call a hidden function to retrieve a value.
Setters are properties which actually call a hidden function to set a value.

When you define a property to have either a getter or a setter or both, its definition
becomes an "accessor descriptor" (as opposed to a "data descriptor"). For
accessor-descriptors, the value and writable characteristics of the descriptor
are moot and ignored, and instead JS considers the set and get

characteristics of the property (as well as configurable and enumerable).

Consider:

var myObject = {

get a() {
return 2;

I

.defineProperty(
myObject,
npe,
{

get: function(){ return this.a * 2 },

enumerable:
);
myObject.a;

myObject.b;

Either through object-literal syntax with get a() { .. } or through explicit
definition with defineProperty(..) , in both cases we created a property on the
object that actually doesn't hold a value, but whose access automatically results
in a hidden function call to the getter function, with whatever value it returns being
the result of the property access.

var myObject = {
get a() {
return 2;
+
+

myObject.a = 3;
myObject.a;
Since we only defined a getter for a , if we try to set the value of a later, the set

operation won't throw an error but will just silently throw the assignment away.
Even if there was a valid setter, our custom getter is hard-coded to return only 2,

so the set operation would be moot.

To make this scenario more sensible, properties should also be defined with
setters, which override the default [[Put]] operation (aka, assignment), per-
property, just as you'd expect. You will almost certainly want to always declare
both getter and setter (having only one or the other often leads to
unexpected/surprising behavior):

var myObject = {

get a() {
return this._a_;

}I

set a(val) {
this._a_ = val x 2;
+
+;

myObject.a = 2;

myObject.a;

Note: In this example, we actually store the specified value 2 of the assignment
([[put]l] operation) into another variable _a_ . The _a_ name is purely by
convention for this example and implies nothing special about its behavior -- it's a
normal property like any other.

Existence

We showed earlier that a property access like myobject.a may resultin an
undefined value if either the explicit undefined is stored there or the a
property doesn't exist at all. So, if the value is the same in both cases, how else
do we distinguish them?

We can ask an object if it has a certain property without asking to get that
property's value:

var myObject = {
a:

+;

("a" in myObject);
("b"™ in myObject);

myObject.hasOwnProperty("a");
myObject.hasOwnProperty("b");

The in operator will check to see if the property is in the object, or if it exists at
any higher level of the [[Prototypel]l chain object traversal (see Chapter 5). By
contrast, hasOwnProperty(..) checks to see if only myobject has the property or
not, and will not consult the [[Prototypell chain. We'll come back to the
important differences between these two operations in Chapter 5 when we
explore [[Prototypel] s in detail.

hasOwnProperty(..) is accessible for all normal objects via delegation to
Object.prototype (see Chapter 5). But it's possible to create an object that does
not link to Object.prototype (via Object.create(null) -- see Chapter 5). In this
case, a method call like myobject.hasOwnProperty(..) would fail.

In that scenario, a more robust way of performing such a check is
Object.prototype.hasOwnProperty.call(myObject,"a") , which borrows the base
hasOwnProperty(..) method and uses explicit this binding (see Chapter 2) to
apply it against our myoObject .

Note: The in operator has the appearance that it will check for the existence of
a value inside a container, but it actually checks for the existence of a property
name. This difference is important to note with respect to arrays, as the
temptation to try a check like 4 in [2, 4, 6] is strong, but this will not behave as
expected.

Enumeration

Previously, we explained briefly the idea of "enumerability" when we looked at the
enumerable property descriptor characteristic. Let's revisit that and examine it in
more close detail.

var myObject = { };

.defineProperty(
myObject,
g,

{ enumerable: , value: 2 }

.defineProperty(
myObject,
npe,

{ enumerable: , value: }
) g

myObject.b;
("b"™ in myObject);
myObject.hasOwnProperty("b");

for (var k in myObject) {
.log(k, myObject[k]);
+

You'll notice that myobject.b in fact exists and has an accessible value, but it
doesn't show upina for..in loop (though, surprisingly, it is revealed by the in
operator existence check). That's because "enumerable" basically means "will be
included if the object's properties are iterated through".

Note: for..in loops applied to arrays can give somewhat unexpected results, in
that the enumeration of an array will include not only all the numeric indices, but
also any enumerable properties. It's a good idea to use for..in loops only on
objects, and traditional for loops with numeric index iteration for the values
stored in arrays.

Another way that enumerable and non-enumerable properties can be
distinguished:

var myObject = { };

.defineProperty(
myObject,
nan,

{ enumerable: , value: }

.defineProperty(
myObject,
np,

{ enumerable: , value: }
) g

myObject.propertyIsEnumerable("a");
myObject.propertyIsEnumerable("b");

.keys(myObject);
.getOwnPropertyNames(myObject);

propertyIsEnumerable(..) tests whether the given property name exists directly
on the object and is also enumerable:true .

Object.keys(..) returns an array of all enumerable properties, whereas
Object.getOwnPropertyNames(..) returns an array of all properties, enumerable or
not.

Whereas in vs. hasOwnProperty(..) differ in whether they consult the
[[Prototypel] chain or not, Object.keys(..) and
Object.getOwnPropertyNames(..) both inspect only the direct object specified.

There's (currently) no built-in way to get a list of all properties which is equivalent
to what the in operator test would consult (traversing all properties on the entire
[[Prototypel] chain, as explained in Chapter 5). You could approximate such a
utility by recursively traversing the [[Prototypel]l chain of an object, and for each

level, capturing the list from object.keys(..) --only enumerable properties.

Iteration

The for..in loop iterates over the list of enumerable properties on an object
(including its [[Prototypel]l chain). But what if you instead want to iterate over
the values?

With numerically-indexed arrays, iterating over the values is typically done with a
standard for loop, like:

var myArray = [1, 2, 3];

for (var i = 0; i < myArray.length; i++) {
.log(myArray[i]);
+

This isn't iterating over the values, though, but iterating over the indices, where
you then use the index to reference the value, as myArray[il .

ES5 also added several iteration helpers for arrays, including forEach(..) ,
every(..) ,and some(..) . Each of these helpers accepts a function callback to
apply to each element in the array, differing only in how they respectively respond

to a return value from the callback.

forEach(..) will iterate over all values in the array, and ignores any callback
return values. every(..) keeps going until the end or the callback returns a

false (or "falsy") value, whereas some(..) keeps going until the end or the
callback returns a true (or "truthy") value.

These special return values inside every(..) and some(..) act somewhat like a
break statementinside a normal for loop, in that they stop the iteration early
before it reaches the end.

If you iterate on an object with a for..in loop, you're also only getting at the
values indirectly, because it's actually iterating only over the enumerable
properties of the object, leaving you to access the properties manually to get the
values.

Note: As contrasted with iterating over an array's indices in a numerically ordered
way (for loop or other iterators), the order of iteration over an object's properties
is not guaranteed and may vary between different JS engines. Do not rely on
any observed ordering for anything that requires consistency among
environments, as any observed agreement is unreliable.

But what if you want to iterate over the values directly instead of the array indices
(or object properties)? Helpfully, ES6 adds a for..of loop syntax for iterating
over arrays (and objects, if the object defines its own custom iterator):

var myArray = [1, 2, 1;

for (var v of myArray) {
.log(v);
+

The for..of loop asks for an iterator object (from a default internal function
known as eeiterator in spec-speak) of the thing to be iterated, and the loop
then iterates over the successive return values from calling that iterator object's

next() method, once for each loop iteration.

Arrays have a built-in @eiterator , SO for..of works easily on them, as shown.
But let's manually iterate the array, using the built-in eeiterator , to see how it
works:

var myArray = [1, 2, 3 1;
var it = myArrayl .iterator]();

it.next(
it.next(
it.next(
it.next(

)
);
);
)

Note: We get at the eeiterator internal property of an object using an ES6

Symbol : Symbol.iterator . We briefly mentioned Symbol semantics earlier in the
chapter (see "Computed Property Names"), so the same reasoning applies here.
You'll always want to reference such special properties by Symbol name
reference instead of by the special value it may hold. Also, despite the name's
implications, eeiterator is not the iterator object itself, but a function that
returns the iterator object -- a subtle but important detail!

As the above snippet reveals, the return value from an iterator's next() call is an
object of the form { value: .. , done: .. } ,where value is the current
iteration value, and done is a boolean that indicates if there's more to iterate.

Notice the value 3 was returned with a done: false , which seems strange at
first glance. You have to call the next() a fourth time (which the for..of loop in
the previous snippet automatically does) to get done:true and know you're truly
done iterating. The reason for this quirk is beyond the scope of what we'll discuss
here, but it comes from the semantics of ES6 generator functions.

While arrays do automatically iterate in for..of loops, regular objects do not
have a built-in geiterator . The reasons for this intentional omission are more
complex than we will examine here, but in general it was better to not include
some implementation that could prove troublesome for future types of objects.

It is possible to define your own default @eiterator for any object that you care
to iterate over. For example:

var myObject = {

a: 2,
b:
Y
.defineProperty(myObject, .iterator, {
enumerable: ,
writable: ,
configurable: ’
value: function() {
var o = this;
var idx = 0;
var ks = .keys(o);
return {
next: function() {
return {
value: ol[ks[idx++]1],
done: (idx > ks.length)
+
}
15
+
)
var it = myObject(.iteratorl();
it.next();
it.next();
it.next();

for (var v of myObject) {
.log(v);
+

Note: We used oObject.defineProperty(..) to define our custom @eiterator
(mostly so we could make it non-enumerable), but using the Symbol as a
computed property name (covered earlier in this chapter), we could have declared
it directly, like var myObject = { a:2, b:3, [Symbol.iterator]: function(){ /* ..

*/ + 1.

Each time the for..of loop calls next() on myObject 's iterator object, the
internal pointer will advance and return back the next value from the object's
properties list (see a previous note about iteration ordering on object
properties/values).

The iteration we just demonstrated is a simple value-by-value iteration, but you
can of course define arbitrarily complex iterations for your custom data structures,
as you see fit. Custom iterators combined with ES6's for..of loop are a
powerful new syntactic tool for manipulating user-defined objects.

For example, a list of Pixel objects (with x and y coordinate values) could
decide to order its iteration based on the linear distance from the (e,0) origin, or
filter out points that are "too far away", etc. As long as your iterator returns the
expected { value: .. } returnvalues from next() calls,and a { done: true }
after the iteration is complete, ES6's for..of can iterate over it.

In fact, you can even generate "infinite" iterators which never "finish" and always
return a new value (such as a random number, an incremented value, a unique
identifier, etc), though you probably will not use such iterators with an unbounded
for..of loop, as it would never end and would hang your program.

var randoms = {
[.iterator]: function() {

return {
next: function() {
return { value: .random() };
}
};

var randoms_pool = [];
for (var n of randoms) {
n

randoms_pool.push(Dk

if (randoms_pool.length ===) break;

This iterator will generate random numbers "forever", so we're careful to only pull
out 100 values so our program doesn't hang.

Review (TL;DR)

Objects in JS have both a literal form (suchas var a={ .. })anda
constructed form (such as var a = new Array(..)). The literal form is almost
always preferred, but the constructed form offers, in some cases, more creation
options.

Many people mistakenly claim "everything in JavaScript is an object", but this is
incorrect. Objects are one of the 6 (or 7, depending on your perspective) primitive
types. Objects have sub-types, including function , and also can be behavior-
specialized, like [object Arrayl as the internal label representing the array
object sub-type.

Objects are collections of key/value pairs. The values can be accessed as
properties, via .propName or ["propName"] syntax. Whenever a property is
accessed, the engine actually invokes the internal default [[Get]] operation
(and [[pPut]] for setting values), which not only looks for the property directly on
the object, but which will traverse the [[Prototypell chain (see Chapter 5) if not
found.

Properties have certain characteristics that can be controlled through property
descriptors, such as writable and configurable . In addition, objects can have
their mutability (and that of their properties) controlled to various levels of
immutability using object.preventExtensions(..) , Object.seal(..) , and
Object.freeze(..)

Properties don't have to contain values -- they can be "accessor properties" as
well, with getters/setters. They can also be either enumerable or not, which
controls if they show up in for..in loop iterations, for instance.

You can also iterate over the values in data structures (arrays, objects, etc) using
the ES6 for..of syntax, which looks for either a built-in or custom eeiterator
object consisting of a next() method to advance through the data values one at
a time.

You Don't Know JS yet: Objects &
Classes - 2nd Edition

Chapter 4: Mixing (Up) "Class"
Objects

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

Following our exploration of objects from the previous chapter, it's natural that we
now turn our attention to "object oriented (OO) programming", with "classes".
We'll first look at "class orientation" as a design pattern, before examining the

mechanics of "classes": "instantiation", "inheritance" and "(relative)
polymorphism".

We'll see that these concepts don't really map very naturally to the object
mechanism in JS, and the lengths (mixins, etc.) many JavaScript developers go to
overcome such challenges.

Note: This chapter spends quite a bit of time (the first half!) on heavy "objected
oriented programming" theory. We eventually relate these ideas to real concrete
JavaScript code in the second half, when we talk about "Mixins". But there's a lot
of concept and pseudo-code to wade through first, so don't get lost -- just stick
with it!

Class Theory

"Class/Inheritance" describes a certain form of code organization and architecture
-- a way of modeling real world problem domains in our software.

OO or class oriented programming stresses that data intrinsically has associated
behavior (of course, different depending on the type and nature of the data!) that
operates on it, so proper design is to package up (aka, encapsulate) the data and
the behavior together. This is sometimes called "data structures" in formal
computer science.

For example, a series of characters that represents a word or phrase is usually
called a "string". The characters are the data. But you almost never just care
about the data, you usually want to do things with the data, so the behaviors that
can apply fo that data (calculating its length, appending data, searching, etc.) are
all designed as methods of a string class.

Any given string is just an instance of this class, which means that it's a neatly
collected packaging of both the character data and the functionality we can
perform on it.

Classes also imply a way of classifying a certain data structure. The way we do
this is to think about any given structure as a specific variation of a more general
base definition.

Let's explore this classification process by looking at a commonly cited example.
A car can be described as a specific implementation of a more general "class" of
thing, called a vehicle.

We model this relationship in software with classes by defining a vehicle class
and a car class.

The definition of vehicle might include things like propulsion (engines, etc.), the
ability to carry people, etc., which would all be the behaviors. What we define in

vehicle is all the stuff that is common to all (or most of) the different types of
vehicles (the "planes, trains, and automobiles").

It might not make sense in our software to re-define the basic essence of "ability
to carry people" over and over again for each different type of vehicle. Instead, we
define that capability once in vehicle , and then when we define car , we simply
indicate that it "inherits" (or "extends") the base definition from vehicle . The
definition of car is said to specialize the general vehicle definition.

While vehicle and car collectively define the behavior by way of methods, the
data in an instance would be things like the unique VIN of a specific car, etc.

And thus, classes, inheritance, and instantiation emerge.

Another key concept with classes is "polymorphism", which describes the idea
that a general behavior from a parent class can be overridden in a child class to
give it more specifics. In fact, relative polymorphism lets us reference the base
behavior from the overridden behavior.

Class theory strongly suggests that a parent class and a child class share the
same method name for a certain behavior, so that the child overrides the parent
(differentially). As we'll see later, doing so in your JavaScript code is opting into

frustration and code brittleness.

"Class" Design Pattern

You may never have thought about classes as a "design pattern", since it's most
common to see discussion of popular "OO Design Patterns", like "lterator",
"Observer", "Factory", "Singleton”, etc. As presented this way, it's almost an
assumption that OO classes are the lower-level mechanics by which we
implement all (higher level) design patterns, as if OO is a given foundation for all
(proper) code.

Depending on your level of formal education in programming, you may have
heard of "procedural programming" as a way of describing code which only
consists of procedures (aka, functions) calling other functions, without any higher
abstractions. You may have been taught that classes were the proper way to
transform procedural-style "spaghetti code" into well-formed, well-organized code.

Of course, if you have experience with "functional programming" (Monads, etc.),
you know very well that classes are just one of several common design patterns.
But for others, this may be the first time you've asked yourself if classes really are
a fundamental foundation for code, or if they are an optional abstraction on top of
code.

Some languages (like Java) don't give you the choice, so it's not very optional at
all -- everything's a class. Other languages like C/C++ or PHP give you both
procedural and class-oriented syntaxes, and it's left more to the developer's
choice which style or mixture of styles is appropriate.

JavaScript "Classes"

Where does JavaScript fall in this regard? JS has had some class-like syntactic
elements (like new and instanceof) for quite awhile, and more recently in ES6,
some additions, like the class keyword (see Appendix A).

But does that mean JavaScript actually has classes? Plain and simple: No.

Since classes are a design pattern, you can, with quite a bit of effort (as we'll see
throughout the rest of this chapter), implement approximations for much of
classical class functionality. JS tries to satisfy the extremely pervasive desire to
design with classes by providing seemingly class-like syntax.

While we may have a syntax that looks like classes, it's as if JavaScript
mechanics are fighting against you using the class design pattern, because
behind the curtain, the mechanisms that you build on are operating quite
differently. Syntactic sugar and (extremely widely used) JS "Class" libraries go a
long way toward hiding this reality from you, but sooner or later you will face the
fact that the classes you have in other languages are not like the "classes" you're
faking in JS.

What this boils down to is that classes are an optional pattern in software design,
and you have the choice to use them in JavaScript or not. Since many developers
have a strong affinity to class oriented software design, we'll spend the rest of this

chapter exploring what it takes to maintain the illusion of classes with what JS
provides, and the pain points we experience.

Class Mechanics

In many class-oriented languages, the "standard library" provides a "stack" data
structure (push, pop, etc.) as a Stack class. This class would have an internal
set of variables that stores the data, and it would have a set of publicly accessible
behaviors ("methods") provided by the class, which gives your code the ability to
interact with the (hidden) data (adding & removing data, etc.).

But in such languages, you don't really operate directly on stack (unless making
a Static class member reference, which is outside the scope of our discussion).
The stack class is merely an abstract explanation of what any "stack" should do,
but it's not itself a "stack". You must instantiate the stack class before you have
a concrete data structure thing to operate against.

Building

The traditional metaphor for "class" and "instance" based thinking comes from a
building construction.

An architect plans out all the characteristics of a building: how wide, how tall, how
many windows and in what locations, even what type of material to use for the
walls and roof. She doesn't necessarily care, at this point, where the building will
be built, nor does she care how many copies of that building will be built.

She also doesn't care very much about the contents of the building -- the
furniture, wall paper, ceiling fans, etc. -- only what type of structure they will be
contained by.

The architectural blue-prints she produces are only plans for a building. They
don't actually constitute a building we can walk into and sit down. We need a
builder for that task. A builder will take those plans and follow them, exactly, as he
builds the building. In a very real sense, he is copying the intended characteristics
from the plans to the physical building.

Once complete, the building is a physical instantiation of the blue-print plans,
hopefully an essentially perfect copy. And then the builder can move to the open
lot next door and do it all over again, creating yet another copy.

The relationship between building and blue-print is indirect. You can examine a
blue-print to understand how the building was structured, for any parts where
direct inspection of the building itself was insufficient. But if you want to open a
door, you have to go to the building itself -- the blue-print merely has lines drawn
on a page that represent where the door should be.

A class is a blue-print. To actually get an object we can interact with, we must
build (aka, "instantiate") something from the class. The end result of such
"construction" is an object, typically called an "instance", which we can directly
call methods on and access any public data properties from, as necessary.

This object is a copy of all the characteristics described by the class.

You likely wouldn't expect to walk into a building and find, framed and hanging on
the wall, a copy of the blue-prints used to plan the building, though the blue-prints
are probably on file with a public records office. Similarly, you don't generally use
an object instance to directly access and manipulate its class, but it is usually
possible to at least determine which class an object instance comes from.

It's more useful to consider the direct relationship of a class to an object instance,
rather than any indirect relationship between an object instance and the class it
came from. A class is instantiated into object form by a copy operation.

Foo
al
az
¥
Bar
b1
b2

As you can see, the arrows move from left to right, and from top to bottom, which
indicates the copy operations that occur, both conceptually and physically.

Constructor

Instances of classes are constructed by a special method of the class, usually of
the same name as the class, called a constructor. This method's explicit job is to
initialize any information (state) the instance will need.

For example, consider this loose pseudo-code (invented syntax) for classes:

class CoolGuy {
specialTrick = nothing

CoolGuy(trick) {
specialTrick = trick
+

showoff() {
output("Here's my trick: ", specialTrick)
+

To make a coolGuy instance, we would call the class constructor:

Joe = new CoolGuy("jumping rope")

Joe.showOff()

Notice that the coolGuy class has a constructor CoolGuy() , which is actually
what we call when we say new CoolGuy(..) . We get an object back (an instance
of our class) from the constructor, and we can call the method showoff() , which
prints out that particular CoolGuy s special trick.

Obviously, jumping rope makes Joe a pretty cool guy.

The constructor of a class belongs to the class, almost universally with the same
name as the class. Also, constructors pretty much always need to be called with
new to let the language engine know you want to construct a new class instance.

Class Inheritance

In class-oriented languages, not only can you define a class which can be
instantiated itself, but you can define another class that inherits from the first
class.

The second class is often said to be a "child class" whereas the first is the "parent
class". These terms obviously come from the metaphor of parents and children,
though the metaphors here are a bit stretched, as you'll see shortly.

When a parent has a biological child, the genetic characteristics of the parent are
copied into the child. Obviously, in most biological reproduction systems, there are
two parents who co-equally contribute genes to the mix. But for the purposes of
the metaphor, we'll assume just one parent.

Once the child exists, he or she is separate from the parent. The child was heavily
influenced by the inheritance from his or her parent, but is unique and distinct. If a
child ends up with red hair, that doesn't mean the parent's hair was or
automatically becomes red.

In a similar way, once a child class is defined, it's separate and distinct from the
parent class. The child class contains an initial copy of the behavior from the
parent, but can then override any inherited behavior and even define new
behavior.

It's important to remember that we're talking about parent and child classes,
which aren't physical things. This is where the metaphor of parent and child gets a
little confusing, because we actually should say that a parent class is like a
parent's DNA and a child class is like a child's DNA. We have to make (aka
"instantiate") a person out of each set of DNA to actually have a physical person
to have a conversation with.

Let's set aside biological parents and children, and look at inheritance through a
slightly different lens: different types of vehicles. That's one of the most canonical
(and often groan-worthy) metaphors to understand inheritance.

Let's revisit the vehicle and car discussion from earlier in this chapter.
Consider this loose pseudo-code (invented syntax) for inherited classes:

class Vehicle {
engines =

ignition() {
output("Turning on my engine.")

+
drive() {
ignition()
output("Steering and moving forward!")
+
b
class Car inherits Vehicle {
wheels =
drive() {

inherited:drive()
output("Rolling on all ", wheels, " wheels!")

S

class SpeedBoat inherits Vehicle {
engines =

ignition() {

output("Turning on my ", engines, " engines.")
+
pilot() {

inherited:drive()

output("Speeding through the water with ease!")
+

Note: For clarity and brevity, constructors for these classes have been omitted.

We define the vehicle class to assume an engine, a way to turn on the ignition,
and a way to drive around. But you wouldn't ever manufacture just a generic
"vehicle", so it's really just an abstract concept at this point.

So then we define two specific kinds of vehicle: car and SpeedBoat . They each
inherit the general characteristics of vehicle , but then they specialize the
characteristics appropriately for each kind. A car needs 4 wheels, and a speed
boat needs 2 engines, which means it needs extra attention to turn on the ignition
of both engines.

Polymorphism

car defines its own drive() method, which overrides the method of the same
name it inherited from vehicle . But then, car s drive() method calls
inherited:drive() , which indicates that car can reference the original pre-
overridden drive() itinherited. SpeedBoat S pilot() method also makes a
reference to its inherited copy of drive() .

This technique is called "polymorphism", or "virtual polymorphism". More
specifically to our current point, we'll call it "relative polymorphism".

Polymorphism is a much broader topic than we will exhaust here, but our current
"relative" semantics refers to one particular aspect: the idea that any method can
reference another method (of the same or different name) at a higher level of the
inheritance hierarchy. We say "relative" because we don't absolutely define which
inheritance level (aka, class) we want to access, but rather relatively reference it

by essentially saying "look one level up".

In many languages, the keyword super is used, in place of this example's
inherited: , which leans on the idea that a "super class" is the parent/ancestor of
the current class.

Another aspect of polymorphism is that a method name can have multiple
definitions at different levels of the inheritance chain, and these definitions are
automatically selected as appropriate when resolving which methods are being
called.

We see two occurrences of that behavior in our example above: drive() is
defined in both vehicle and car ,and ignition() is defined in both vehicle
and SpeedBoat .

Note: Another thing that traditional class-oriented languages give you via super
is a direct way for the constructor of a child class to reference the constructor of
its parent class. This is largely true because with real classes, the constructor
belongs to the class. However, in JS, it's the reverse -- it's actually more
appropriate to think of the "class" belonging to the constructor (the
Foo.prototype... type references). Since in JS the relationship between child
and parent exists only between the two .prototype objects of the respective
constructors, the constructors themselves are not directly related, and thus there's
no simple way to relatively reference one from the other (see Appendix A for ES6
class which "solves" this with super).

An interesting implication of polymorphism can be seen specifically with
ignition() . Inside pilot() , a relative-polymorphic reference is made to (the
inherited) vehicle s version of drive() . Butthat drive() references an
ignition() method just by name (no relative reference).

Which version of ignition() will the language engine use, the one from
Vehicle orthe one from SpeedBoat ? It uses the SpeedBoat version of
ignition() . If you were to instantiate vehicle class itself, and then call its
drive() , the language engine would instead just use vehicle s ignition()
method definition.

Put another way, the definition for the method ignition() polymorphs (changes)
depending on which class (level of inheritance) you are referencing an instance
of.

This may seem like overly deep academic detail. But understanding these details
is necessary to properly contrast similar (but distinct) behaviors in JavaScript's
[[Prototypel]l mechanism.

When classes are inherited, there is a way for the classes themselves (not the
object instances created from them!) to relatively reference the class inherited
from, and this relative reference is usually called super .

Remember this figure from earlier:

Foo
al
a
L
Bar
b1
b2

Notice how for both instantiation (a1, a2, b1, and b2) and inheritance
(Bar), the arrows indicate a copy operation.

Conceptually, it would seem a child class Bar can access behavior in its parent
class Foo using a relative polymorphic reference (aka, super). However, in
reality, the child class is merely given a copy of the inherited behavior from its
parent class. If the child "overrides" a method it inherits, both the original and
overridden versions of the method are actually maintained, so that they are both
accessible.

Don't let polymorphism confuse you into thinking a child class is linked to its
parent class. A child class instead gets a copy of what it needs from the parent
class. Class inheritance implies copies.

Multiple Inheritance

Recall our earlier discussion of parent(s) and children and DNA? We said that the
metaphor was a bit weird because biologically most offspring come from two
parents. If a class could inherit from two other classes, it would more closely fit
the parent/child metaphor.

Some class-oriented languages allow you to specify more than one "parent” class
to "inherit" from. Multiple-inheritance means that each parent class definition is
copied into the child class.

On the surface, this seems like a powerful addition to class-orientation, giving us
the ability to compose more functionality together. However, there are certainly
some complicating questions that arise. If both parent classes provide a method
called drive() , which version would a drive() reference in the child resolve
to? Would you always have to manually specify which parent's drive() you
meant, thus losing some of the gracefulness of polymorphic inheritance?

There's another variation, the so called "Diamond Problem", which refers to the
scenario where a child class "D" inherits from two parent classes ("B" and "C"),
and each of those in turn inherits from a common "A" parent. If "A" provides a
method drive() , and both "B" and "C" override (polymorph) that method, when
D references drive() , which version should it use (B:drive() or C:drive())?

These complications go even much deeper than this quick glance. We address
them here only so we can contrast to how JavaScript's mechanisms work.

JavaScript is simpler: it does not provide a native mechanism for "multiple
inheritance". Many see this as a good thing, because the complexity savings
more than make up for the "reduced" functionality. But this doesn't stop
developers from trying to fake it in various ways, as we'll see next.

Mixins

JavaScript's object mechanism does not automatically perform copy behavior
when you "inherit" or "instantiate". Plainly, there are no "classes" in JavaScript to
instantiate, only objects. And objects don't get copied to other objects, they get
linked together (more on that in Chapter 5).

Since observed class behaviors in other languages imply copies, let's examine
how JS developers fake the missing copy behavior of classes in JavaScript:
mixins. We'll look at two types of "mixin": explicit and implicit.

Explicit Mixins

Let's again revisit our vehicle and car example from before. Since JavaScript
will not automatically copy behavior from vehicle to car , we can instead create
a utility that manually copies. Such a utility is often called extend(..) by many
libraries/frameworks, but we will call it mixin(..) here for illustrative purposes.

function mixin() {
for (var key in sourceObj) {

if (!(key in targetObj)) {
targetObj [keyl = sourceObj[key];
¥

return targetObj;

var Vehicle = {
engines: 1,

ignition: function() {
.log("Turning on my engine.");
H

drive: function() {
this.ignition();
.log("Steering and moving forward!");

var Car = mixin(Vehicle, {
wheels: 4,

drive: function() {
Vehicle.drive.call(this);
.log("Rolling on all " + this.wheels + " wheels!");
+
)

Note: Subtly but importantly, we're not dealing with classes anymore, because
there are no classes in JavaScript. vehicle and car are just objects that we
make copies from and to, respectively.

car now has a copy of the properties and functions from vehicle . Technically,
functions are not actually duplicated, but rather references to the functions are
copied. So, car now has a property called ignition , which is a copied
reference to the ignition() function, as well as a property called engines with
the copied value of 1 from vehicle .

Car already had a drive property (function), so that property reference was not
overridden (see the if statementin mixin(..) above).

"Polymorphism" Revisited

Let's examine this statement: vehicle.drive.call(this) . This is what | call
"explicit pseudo-polymorphism". Recall in our previous pseudo-code this line was
inherited:drive() , which we called "relative polymorphism".

JavaScript does not have (prior to ES6; see Appendix A) a facility for relative
polymorphism. So, because both car and vehicle had a function of the
same name: drive() , to distinguish a call to one or the other, we must make an
absolute (not relative) reference. We explicitly specify the vehicle object by
name, and call the drive() function on it.

But if we said vehicle.drive() , the this binding for that function call would be
the vehicle objectinstead of the car object (see Chapter 2), which is not what
we want. So, instead we use .call(this) (Chapter 2) to ensure that drive()

is executed in the context of the car object.

Note: If the function name identifier for car.drive() hadn't overlapped with (aka,
"shadowed"; see Chapter 5) vehicle.drive() , we wouldn't have been exercising
"method polymorphism"”. So, a reference to Vehicle.drive() would have been
copied over by the mixin(..) call, and we could have accessed directly with
this.drive() . The chosen identifier overlap shadowing is why we have to use
the more complex explicit pseudo-polymorphism approach.

In class-oriented languages, which have relative polymorphism, the linkage
between car and vehicle is established once, at the top of the class definition,
which makes for only one place to maintain such relationships.

But because of JavaScript's peculiarities, explicit pseudo-polymorphism (because
of shadowing!) creates brittle manual/explicit linkage in every single function
where you need such a (pseudo-)polymorphic reference. This can
significantly increase the maintenance cost. Moreover, while explicit pseudo-
polymorphism can emulate the behavior of "multiple inheritance”, it only increases
the complexity and brittleness.

The result of such approaches is usually more complex, harder-to-read, and
harder-to-maintain code. Explicit pseudo-polymorphism should be avoided
wherever possible, because the cost outweighs the benefit in most respects.

Mixing Copies

Recall the mixin(..) utility from above:

function mixin() {
for (var key in sourceObj) {

if (!(key in targetObj)) {
targetObj [key] = sourceObj[key];

}
}
return targetObj;
}
Now, let's examine how mixin(..) works. It iterates over the properties of

sourceObj (Vehicle in our example) and if there's no matching property of that
name in targetObj (Car in our example), it makes a copy. Since we're making
the copy after the initial object exists, we are careful to not copy over a target
property.

If we made the copies first, before specifying the car specific contents, we could
omit this check against targetobj , but that's a little more clunky and less
efficient, so it's generally less preferred:

function mixin() {
for (var key in sourceObj) {
targetObj [key]l = sourceObj[keyl;
+

return targetObj;
}

var Vehicle = {

4

var Car = mixin(Vehicle, { });

mixin({
wheels: 4,

drive: function() {

+
}, Car);

Either approach, we have explicitly copied the non-overlapping contents of
vehicle into car . The name "mixin" comes from an alternate way of explaining
the task: car has vehicle s contents mixed-in, just like you mix in chocolate
chips into your favorite cookie dough.

As a result of the copy operation, car will operate somewhat separately from
vehicle . If you add a property onto car , it will not affect vehicle , and vice
versa.

Note: A few minor details have been skimmed over here. There are still some
subtle ways the two objects can "affect" each other even after copying, such as if
they both share a reference to a common object (such as an array).

Since the two objects also share references to their common functions, that
means that even manual copying of functions (aka, mixins) from one object
to another doesn't actually emulate the real duplication from class to
instance that occurs in class-oriented languages.

JavaScript functions can't really be duplicated (in a standard, reliable way), so
what you end up with instead is a duplicated reference to the same shared
function object (functions are objects; see Chapter 3). If you modified one of the
shared function objects (like ignition()) by adding properties on top of it, for
instance, both vehicle and car would be "affected" via the shared reference.

Explicit mixins are a fine mechanism in JavaScript. But they appear more
powerful than they really are. Not much benefit is actually derived from copying a
property from one object to another, as opposed to just defining the properties

twice, once on each object. And that's especially true given the function-object
reference nuance we just mentioned.

If you explicitly mix-in two or more objects into your target object, you can
partially emulate the behavior of "multiple inheritance", but there's no direct way
to handle collisions if the same method or property is being copied from more
than one source. Some developers/libraries have come up with "late binding"
techniques and other exotic work-arounds, but fundamentally these "tricks" are
usually more effort (and lesser performance!) than the pay-off.

Take care only to use explicit mixins where it actually helps make more readable
code, and avoid the pattern if you find it making code that's harder to trace, or if
you find it creates unnecessary or unwieldy dependencies between objects.

If it starts to get harder to properly use mixins than before you used them,
you should probably stop using mixins. In fact, if you have to use a complex
library/utility to work out all these details, it might be a sign that you're going about
it the harder way, perhaps unnecessarily. In Chapter 6, we'll try to distill a simpler
way that accomplishes the desired outcomes without all the fuss.

Parasitic Inheritance

A variation on this explicit mixin pattern, which is both in some ways explicit and in
other ways implicit, is called "parasitic inheritance", popularized mainly by
Douglas Crockford.

Here's how it can work:

// "Traditional JS Class" “Vehicle®
function Vehicle() {
this.engines = 1;
+
Vehicle.prototype.ignition = function() {
.log("Turning on my engine.");
b
Vehicle.prototype.drive = function() {
this.ignition();
.log("Steering and moving forward!");
b

// "Parasitic Class" "Car’
function Car() {
// first, ‘car’ is a “Vehicle®
var car = new Vehicle();

// now, let's modify our “car® to specialize it
car.wheels = 4;

// save a privileged reference to ‘Vehicle::drive()"
var vehDrive = car.drive;

// override ‘Vehicle::drive()"
car.drive = function() {
vehDrive.call(this);
.log("Rolling on all " + this.wheels + " wheels!");

+;

return car;

var myCar = new Car();

myCar.drive();

// Turning on my engine.

// Steering and moving forward!
// Rolling on all 4 wheels!

As you can see, we initially make a copy of the definition from the vehicle

"parent class" (object), then mixin our "child class" (object) definition (preserving
privileged parent-class references as needed), and pass off this composed object
car as our child instance.

Note: when we call new Car() , a new object is created and referenced by car s
this reference (see Chapter 2). But since we don't use that object, and instead
return our own car object, the initially created object is just discarded. So,
car() could be called without the new keyword, and the functionality above
would be identical, but without the wasted object creation/garbage-collection.

Implicit Mixins

Implicit mixins are closely related to explicit pseudo-polymorphism as explained
previously. As such, they come with the same caveats and warnings.

Consider this code:

var Something = {
cool: function() {
this.greeting = "Hello World";
this.count = this.count ? this.count + B

+i

Something.cool();
Something.greeting;
Something.count;

var Another = {
cool: function() {

Something.cool.call(this);
I

Another.cool();
Another.greeting;
Another.count;

With Something.cool.call(this) , which can happen either in a "constructor"
call (most common) or in a method call (shown here), we essentially "borrow" the
function Something.cool() and callitin the context of Another (viaits this
binding; see Chapter 2) instead of Something . The end result is that the
assignments that Something.cool() makes are applied against the Another
object rather than the something object.

So, it is said that we "mixed in" Something s behavior with (or into) Another .

While this sort of technique seems to take useful advantage of this rebinding
functionality, it is the brittle Something.cool.call(this) call, which cannot be
made into a relative (and thus more flexible) reference, that you should heed with
caution. Generally, avoid such constructs where possible to keep cleaner and
more maintainable code.

Review (TL;DR)

Classes are a design pattern. Many languages provide syntax which enables
natural class-oriented software design. JS also has a similar syntax, but it
behaves very differently from what you're used to with classes in those other
languages.

Classes mean copies.

When traditional classes are instantiated, a copy of behavior from class to
instance occurs. When classes are inherited, a copy of behavior from parent to
child also occurs.

Polymorphism (having different functions at multiple levels of an inheritance chain
with the same name) may seem like it implies a referential relative link from child
back to parent, but it's still just a result of copy behavior.

JavaScript does not automatically create copies (as classes imply) between
objects.

The mixin pattern (both explicit and implicit) is often used to sort of emulate class
copy behavior, but this usually leads to ugly and brittle syntax like explicit pseudo-
polymorphism (0ther0bj.methodName.call(this, ...)), which often results in
harder to understand and maintain code.

Explicit mixins are also not exactly the same as class copy, since objects (and
functions!) only have shared references duplicated, not the objects/functions
duplicated themselves. Not paying attention to such nuance is the source of a
variety of gotchas.

In general, faking classes in JS often sets more landmines for future coding than
solving present real problems.

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Chapter 5: Prototypes

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

In Chapters 3 and 4, we mentioned the [[Prototypel] chain several times, but
haven't said what exactly it is. We will now examine prototypes in detail.

Note: All of the attempts to emulate class-copy behavior, as described previously
in Chapter 4, labeled as variations of "mixins", completely circumvent the
[[Prototype]l] chain mechanism we examine here in this chapter.

[[Prototype]]

Objects in JavaScript have an internal property, denoted in the specification as
[[Prototypel]l , which is simply a reference to another object. Almost all objects
are given a non- null value for this property, at the time of their creation.

Note: We will see shortly that it is possible for an object to have an empty
[[Prototypel] linkage, though this is somewhat less common.

Consider:

var myObject = {
a:

+;

myObject.a;

What is the [[Prototypel] reference used for? In Chapter 3, we examined the

[[Get]] operation that is invoked when you reference a property on an object,
such as myobject.a . For that default [[Get]] operation, the first step is to check
if the object itself has a property a on it, and if so, it's used.

Note: ES6 Proxies are outside of our discussion scope in this book (will be
covered in a later book in the series!), but everything we discuss here about
normal [[Get]] and [[Putl]l behavior does not apply ifa Proxy is involved.

But it's what happens if a isn't present on myobject that brings our attention
now to the [[Prototypell link of the object.

The default [[Get]] operation proceeds to follow the [[Prototypel] link of the
object if it cannot find the requested property on the object directly.

var anotherObject = {
a:

Iz
var myObject = .create(anotherObject);
myObject.a;
Note: We will explain what object.create(..) does, and how it operates, shortly.

For now, just assume it creates an object with the [[Prototype]l] linkage we're
examining to the object specified.

So, we have myobject thatis now [[Prototypell linked to anotherObject .
Clearly myobject.a doesn't actually exist, but nevertheless, the property access
succeeds (being found on anotherobject instead) and indeed finds the value 2 .

But, if a weren't found on anotherObject either, its [[Prototypell chain, if non-
empty, is again consulted and followed.

This process continues until either a matching property name is found, or the
[[Prototypel] chain ends. If no matching property is ever found by the end of
the chain, the return result from the [[Get]] operationis undefined .

Similar to this [[Prototypel] chain look-up process, if you use a for..in loop
to iterate over an object, any property that can be reached via its chain (and is
also enumerable -- see Chapter 3) will be enumerated. If you use the in
operator to test for the existence of a property on an object, in will check the
entire chain of the object (regardless of enumerability).

var anotherObject = {
a:

+;

var myObject = .create(anotherObject);

for (var k in myObject) {
.log("found: " + k);
+

("a" in myObject);

So, the [[Prototypel]l chain is consulted, one link at a time, when you perform
property look-ups in various fashions. The look-up stops once the property is
found or the chain ends.

Object.prototype

But where exactly does the [[Prototype]l] chain "end"?

The top-end of every normal [[Prototypel]l chain is the built-in

Object.prototype . This object includes a variety of common utilities used all over
JS, because all normal (built-in, not host-specific extension) objects in JavaScript
"descend from" (aka, have at the top of their [[Prototypel]l chain) the
Object.prototype object.

Some utilities found here you may be familiar with include .toString() and

.valueof() . In Chapter 3, we introduced another: .hasOwnProperty(..) . And yet
another function on object.prototype you may not be familiar with, but which
we'll address later in this chapter, is .isPrototype0f(..) .

Setting & Shadowing Properties

Back in Chapter 3, we mentioned that setting properties on an object was more
nuanced than just adding a new property to the object or changing an existing
property's value. We will now revisit this situation more completely.

myObject.foo = "bar";

If the myobject object already has a normal data accessor property called foo
directly present on it, the assignment is as simple as changing the value of the
existing property.

If foo is not already present directly on myobject , the [[Prototypell chain is
traversed, just like for the [[Get]l] operation. If foo is notfound anywhere in
the chain, the property foo is added directly to myobject with the specified
value, as expected.

However, if foo is already present somewhere higher in the chain, nuanced (and
perhaps surprising) behavior can occur with the myobject.foo = "bar"
assignment. We'll examine that more in just a moment.

If the property name foo ends up both on myobject itself and at a higher level
of the [[Prototypel]l chain that starts at myobject , this is called shadowing. The
foo property directly on myobject Shadows any foo property which appears
higher in the chain, because the myobject.foo look-up would always find the

foo property that's lowest in the chain.

As we just hinted, shadowing foo on myObject is notas simple as it may seem.
We will now examine three scenarios for the myobject.foo = "bar" assignment
when foo is not already on myobject directly, but is at a higher level of
myObject 'S [[Prototypell chain:

1. If a normal data accessor (see Chapter 3) property named foo is found
anywhere higher on the [[Prototype]l] chain, and it's not marked as read-
only (writable:false) then a new property called foo is added directly to

myObject , resulting in a shadowed property.

2. Ifa foo is found higher onthe [[Prototypel]l chain, but it's marked as
read-only (writable:false), then both the setting of that existing property as
well as the creation of the shadowed property on myobject are disallowed.
If the code is running in strict mode , an error will be thrown. Otherwise, the
setting of the property value will silently be ignored. Either way, no
shadowing occurs.

3. Ifa foo isfound higher on the [[Prototypel] chain and it's a setter (see
Chapter 3), then the setter will always be called. No foo will be added to
(aka, shadowed on) myobject , nor will the foo setter be redefined.

Most developers assume that assignment of a property ([[Put]]) will always
result in shadowing if the property already exists higher on the [[Prototypell
chain, but as you can see, that's only true in one (#1) of the three situations just
described.

If you want to shadow foo in cases #2 and #3, you cannot use = assignment,
but must instead use oObject.defineProperty(..) (see Chapter 3)to add foo to

myObject .

Note: Case #2 may be the most surprising of the three. The presence of a read-
only property prevents a property of the same name being implicitly created
(shadowed) at a lower level of a [[Prototype]l] chain. The reason for this
restriction is primarily to reinforce the illusion of class-inherited properties. If you
think of the foo at a higher level of the chain as having been inherited (copied
down) to myobject , then it makes sense to enforce the non-writable nature of
that foo property on myobject . If you however separate the illusion from the
fact, and recognize that no such inheritance copying actually occurred (see
Chapters 4 and 5), it's a little unnatural that myobject would be prevented from
having a foo property just because some other object had a non-writable foo
on it. It's even stranger that this restriction only applies to = assignment, but is
not enforced when using 0bject.defineProperty(..) .

Shadowing with methods leads to ugly explicit pseudo-polymorphism (see
Chapter 4) if you need to delegate between them. Usually, shadowing is more
complicated and nuanced than it's worth, so you should try to avoid it if

possible. See Chapter 6 for an alternative design pattern, which among other
things discourages shadowing in favor of cleaner alternatives.

Shadowing can even occur implicitly in subtle ways, so care must be taken if
trying to avoid it. Consider:

var anotherObject = {
a:

b
var myObject = .create(anotherObject);

anotherObject.a;
myObject.a;

anotherObject.hasOwnProperty("a");
myObject.hasOwnProperty("a");

myObject.a++;

anotherObject.a;
myObject.a;

myObject.hasOwnProperty("a");

Though it may appear that myobject.a++ should (via delegation) look-up and just
increment the anotherObject.a property itself in place, instead the ++ operation
corresponds to myObject.a = myObject.a + 1 . Theresultis [[Get]] looking up

a property via [[Prototypel]l to getthe currentvalue 2 from

anotherObject.a , incrementing the value by one, then [[Put]] assigning the 3
value to a new shadowed property a on myoObject . Oops!

Be very careful when dealing with delegated properties that you modify. If you
wanted to increment anotherObject.a , the only proper way is

anotherObject.a++

"Class"

At this point, you might be wondering: "Why does one object need to link to
another object?" What's the real benefit? That is a very appropriate question to
ask, but we must first understand what [[Prototypell is not before we can fully
understand and appreciate what it is and how it's useful.

As we explained in Chapter 4, in JavaScript, there are no abstract
patterns/blueprints for objects called "classes" as there are in class-oriented
languages. JavaScript just has objects.

In fact, JavaScript is almost unique among languages as perhaps the only
language with the right to use the label "object oriented", because it's one of a
very short list of languages where an object can be created directly, without a
class at all.

In JavaScript, classes can't (being that they don't exist!) describe what an object
can do. The object defines its own behavior directly. There's just the object.

"Class" Functions

There's a peculiar kind of behavior in JavaScript that has been shamelessly
abused for years to hack something that /ooks like "classes". We'll examine this
approach in detail.

The peculiar "sort-of class" behavior hinges on a strange characteristic of
functions: all functions by default get a public, non-enumerable (see Chapter 3)
property on them called prototype , which points at an otherwise arbitrary object.

function Foo() {
b

Foo.prototype;

This object is often called "Foo's prototype", because we access it via an
unfortunately-named Foo.prototype property reference. However, that
terminology is hopelessly destined to lead us into confusion, as we'll see shortly.
Instead, | will call it "the object formerly known as Foo's prototype". Just kidding.
How about: "object arbitrarily labeled 'Foo dot prototype™?

Whatever we call it, what exactly is this object?

The most direct way to explain it is that each object created from calling new
Foo() (see Chapter 2) will end up (somewhat arbitrarily) [[Prototypell -linked to
this "Foo dot prototype" object.

Let's illustrate:

function Foo() {
+
var a = new Foo();

.getPrototype0Of(a) === Foo.prototype;

When a is created by calling new Foo() , one of the things (see Chapter 2 for all
four steps) that happens is that a gets an internal [[Prototypel] link to the
object that Foo.prototype is pointing at.

Stop for a moment and ponder the implications of that statement.

In class-oriented languages, multiple copies (aka, "instances") of a class can be
made, like stamping something out from a mold. As we saw in Chapter 4, this
happens because the process of instantiating (or inheriting from) a class means,
"copy the behavior plan from that class into a physical object", and this is done
again for each new instance.

But in JavaScript, there are no such copy-actions performed. You don't create
multiple instances of a class. You can create multiple objects that [[Prototypel]
link to a common object. But by default, no copying occurs, and thus these
objects don't end up totally separate and disconnected from each other, but
rather, quite linked.

new Foo() results in a new object (we called it a), and that new object a is
internally [[Prototypel]l linked to the Foo.prototype object.

We end up with two objects, linked to each other. That's it. We didn't
instantiate a class. We certainly didn't do any copying of behavior from a "class"
into a concrete object. We just caused two objects to be linked to each other.

In fact, the secret, which eludes most JS developers, is that the new Foo()
function calling had really almost nothing direct to do with the process of creating
the link. It was sort of an accidental side-effect. new Foo() is an indirect,
round-about way to end up with what we want: a new object linked to another
object.

Can we get what we want in a more direct way? Yes! The hero is
Object.create(..) . But we'll get to that in a little bit.

What's in a name?

In JavaScript, we don't make copies from one object ("class") to another
("instance"). We make links between objects. For the [[Prototypel] mechanism,
visually, the arrows move from right to left, and from bottom to top.

Foo.prototype

[al
az
Bar.prototype
b1
b2

This mechanism is often called "prototypal inheritance" (we'll explore the code in
detail shortly), which is commonly said to be the dynamic-language version of
"classical inheritance". It's an attempt to piggy-back on the common
understanding of what "inheritance" means in the class-oriented world, but tweak
(read: pave over) the understood semantics, to fit dynamic scripting.

The word "inheritance" has a very strong meaning (see Chapter 4), with plenty of
mental precedent. Merely adding "prototypal” in front to distinguish the actually
nearly opposite behavior in JavaScript has left in its wake nearly two decades of
miry confusion.

| like to say that sticking "prototypal” in front of "inheritance" to drastically reverse
its actual meaning is like holding an orange in one hand, an apple in the other,
and insisting on calling the apple a "red orange". No matter what confusing label |
put in front of it, that doesn't change the fact that one fruit is an apple and the
other is an orange.

The better approach is to plainly call an apple an apple -- to use the most
accurate and direct terminology. That makes it easier to understand both their
similarities and their many differences, because we all have a simple, shared
understanding of what "apple" means.

Because of the confusion and conflation of terms, | believe the label "prototypal
inheritance" itself (and trying to mis-apply all its associated class-orientation

terminology, like "class", "constructor", "instance", "polymorphism", etc) has done

more harm than good in explaining how JavaScript's mechanism really works.

"Inheritance" implies a copy operation, and JavaScript doesn't copy object
properties (natively, by default). Instead, JS creates a link between two objects,
where one object can essentially delegate property/function access to another
object. "Delegation” (see Chapter 6) is a much more accurate term for
JavaScript's object-linking mechanism.

Another term which is sometimes thrown around in JavaScript is "differential
inheritance". The idea here is that we describe an object's behavior in terms of
what is different from a more general descriptor. For example, you explain that a
car is a kind of vehicle, but one that has exactly 4 wheels, rather than re-
describing all the specifics of what makes up a general vehicle (engine, etc).

If you try to think of any given object in JS as the sum total of all behavior that is
available via delegation, and in your mind you flatten all that behavior into one
tangible thing, then you can (sorta) see how "differential inheritance" might fit.

But just like with "prototypal inheritance", "differential inheritance" pretends that
your mental model is more important than what is physically happening in the
language. It overlooks the fact that object B is not actually differentially
constructed, but is instead built with specific characteristics defined, alongside
"holes" where nothing is defined. It is in these "holes" (gaps in, or lack of,
definition) that delegation can take over and, on the fly, "fill them in" with
delegated behavior.

The object is not, by native default, flattened into the single differential object,
through copying, that the mental model of "differential inheritance" implies. As
such, "differential inheritance" is just not as natural a fit for describing how
JavaScript's [[Prototypel] mechanism actually works.

You can choose to prefer the "differential inheritance" terminology and mental
model, as a matter of taste, but there's no denying the fact that it only fits the
mental acrobatics in your mind, not the physical behavior in the engine.

"Constructors"

Let's go back to some earlier code:

function Foo() {
}

var a = new Foo();

What exactly leads us to think Foo is a "class"?

For one, we see the use of the new keyword, just like class-oriented languages
do when they construct class instances. For another, it appears that we are in fact
executing a constructor method of a class, because Foo() is actually a method
that gets called, just like how a real class's constructor gets called when you
instantiate that class.

To further the confusion of "constructor" semantics, the arbitrarily labeled
Foo.prototype oObject has another trick up its sleeve. Consider this code:

function Foo() {
}
Foo.prototype.constructor === Foo;

var a = new Foo();
a.constructor === Foo;

The Foo.prototype object by default (at declaration time on line 1 of the snippet!)
gets a public, non-enumerable (see Chapter 3) property called .constructor ,
and this property is a reference back to the function (Foo in this case) that the
object is associated with. Moreover, we see that object a created by the
"constructor" call new Foo() seems to also have a property on it called
.constructor which similarly points to "the function which created it".

Note: This is not actually true. a has no .constructor property on it, and
though a.constructor does in fact resolve to the Foo function, "constructor”
does not actually mean "was constructed by", as it appears. We'll explain this
strangeness shortly.

Oh, yeah, also... by convention in the JavaScript world, "class"es are named with
a capital letter, so the fact that it's Foo instead of foo is a strong clue that we
intend it to be a "class". That's totally obvious to you, right!?

Note: This convention is so strong that many JS linters actually complain if you
call new on a method with a lowercase name, or if we don't call new on a
function that happens to start with a capital letter. That sort of boggles the mind
that we struggle so much to get (fake) "class-orientation" right in JavaScript that
we create linter rules to ensure we use capital letters, even though the capital
letter doesn't mean anything at all to the JS engine.

Constructor Or Call?

In the above snippet, it's tempting to think that Foo is a "constructor", because
we call it with new and we observe that it "constructs" an object.

In reality, Foo is no more a "constructor" than any other function in your program.
Functions themselves are not constructors. However, when you put the new
keyword in front of a normal function call, that makes that function call a
"constructor call". In fact, new sort of hijacks any normal function and calls itin a
fashion that constructs an object, in addition to whatever else it was going to
do.

For example:

function NothingSpecial() {
.log("Don't mind me!");

S

var a = new NothingSpecial();

NothingSpecial is just a plain old normal function, but when called with new , it
constructs an object, almost as a side-effect, which we happen to assignto a .
The call was a constructor call, but NothingSpecial is not, in and of itself, a
constructor.

In other words, in JavaScript, it's most appropriate to say that a "constructor” is
any function called with the new keyword in front of it.

Functions aren't constructors, but function calls are "constructor calls" if and only
if new is used.

Mechanics

Are those the only common triggers for ill-fated "class" discussions in JavaScript?

Not quite. JS developers have strived to simulate as much as they can of class-
orientation:

function Foo() {
this.name = name;

}

Foo.prototype.myName = function() {
return this.name;

3

new Foo("a");
var b = new Foo("b");

var a

a.myName() ;
b.myName() ;

This snippet shows two additional "class-orientation" tricks in play:

1. this.name = name : adds the .name property onto each object(a and b,
respectively; see Chapter 2 about this binding), similar to how class
instances encapsulate data values.

2. Foo.prototype.myName = ... : perhaps the more interesting technique, this
adds a property (function) to the Foo.prototype object. Now, a.myName()
works, but perhaps surprisingly. How?

In the above snippet, it's strongly tempting to think that when a and b are
created, the properties/functions on the Foo.prototype object are copied over to
each of a and b objects. However, that's not what happens.

At the beginning of this chapter, we explained the [[Prototypel]l link, and how it
provides the fall-back look-up steps if a property reference isn't found directly on
an object, as part of the default [[Get]] algorithm.

So, by virtue of how they are created, a and b each end up with an internal
[[Prototypel] linkage to Foo.prototype . When myName is notfound on a or
b , respectively, it's instead found (through delegation, see Chapter 6) on

Foo.prototype .

"Constructor” Redux

Recall the discussion from earlier about the .constructor property, and how it
seems like a.constructor === Foo being true means that a has an actual
.constructor property on it, pointing at Foo ? Not correct.

This is just unfortunate confusion. In actuality, the .constructor reference is also
delegated up to Foo.prototype , which happens to, by default, have a

.constructor that points at Foo .

It seems awfully convenient that an object a "constructed by" Foo would have
access to a .constructor property that points to Foo . But that's nothing more
than a false sense of security. It's a happy accident, almost tangentially, that
a.constructor happens to point at Foo via this default [[Prototype]l
delegation. There are actually several ways that the ill-fated assumption of
.constructor meaning "was constructed by" can come back to bite you.

For one, the .constructor property on Foo.prototype is only there by default on
the object created when Foo the function is declared. If you create a new object,
and replace a function's default .prototype object reference, the new object will
not by default magically geta .constructor onit.

Consider:

function Foo() { H
Foo.prototype = { t;

var al = new Foo();
al.constructor === Foo;
al.constructor === ;

Object(..) didn't "construct" a1 did it? It sure seems like Foo() "constructed"
it. Many developers think of Foo() as doing the construction, but where
everything falls apart is when you think "constructor" means "was constructed by",
because by that reasoning, al.constructor should be Foo , butitisn't!

What's happening? a1l has no .constructor property, so it delegates up the
[[Prototypel] chainto Foo.prototype . But that object doesn't have a
.constructor either (like the default Foo.prototype object would have had!), so

it keeps delegating, this time up to object.prototype , the top of the delegation

chain. That object indeed has a .constructor on it, which points to the built-in

Object(..) function.

Misconception, busted.

Of course, you can add .constructor back to the Foo.prototype object, but this
takes manual work, especially if you want to match native behavior and have it be
non-enumerable (see Chapter 3).

For example:
function Foo() { }
Foo.prototype = { +i
.defineProperty(Foo.prototype, "constructor" , {

enumerable: ,
writable: ,
configurable: ,
value: Foo

)

That's a lot of manual work to fix .constructor . Moreover, all we're really doing is
perpetuating the misconception that "constructor" means "was constructed by".
That's an expensive illusion.

The factis, .constructor on an object arbitrarily points, by default, at a function
who, reciprocally, has a reference back to the object -- a reference which it calls

.prototype . The words "constructor" and "prototype" only have a loose default
meaning that might or might not hold true later. The best thing to do is remind
yourself, "constructor does not mean constructed by".

.constructor is not a magic immutable property. It is non-enumerable (see
snippet above), but its value is writable (can be changed), and moreover, you can
add or overwrite (intentionally or accidentally) a property of the name

constructor on any objectin any [[Prototypel]l chain, with any value you see
fit.

By virtue of how the [[Get]] algorithm traverses the [[Prototypel] chain, a
.constructor property reference found anywhere may resolve quite differently
than you'd expect.

See how arbitrary its meaning actually is?

The result? Some arbitrary object-property reference like ail.constructor cannot
actually be trusted to be the assumed default function reference. Moreover, as
we'll see shortly, just by simple omission, ail.constructor can even end up
pointing somewhere quite surprising and insensible.

.constructor is extremely unreliable, and an unsafe reference to rely upon in
your code. Generally, such references should be avoided where possible.

"(Prototypal) Inheritance™

We've seen some approximations of "class" mechanics as typically hacked into
JavaScript programs. But JavaScript "class"es would be rather hollow if we didn't
have an approximation of "inheritance".

Actually, we've already seen the mechanism which is commonly called "prototypal
inheritance" at work when a was able to "inherit from" Foo.prototype , and thus
get access to the myName() function. But we traditionally think of "inheritance" as
being a relationship between two "classes", rather than between "class" and
"instance".

Foo.prototype

[y al
a2
Bar.prototype
b1
b2

Recall this figure from earlier, which shows not only delegation from an object
(aka, "instance") a1 to object Foo.prototype , but from Bar.prototype to

Foo.prototype , which somewhat resembles the concept of Parent-Child class
inheritance. Resembles, except of course for the direction of the arrows, which
show these are delegation links rather than copy operations.

And, here's the typical "prototype style" code that creates such links:

function Foo() {
this.name = name;

Foo.prototype.myName = function() {
return this.name;

+;

function Bar() {
Foo.call(this, name);
this.label = label;

+

// here, we make a new "Bar.prototype’
// linked to "Foo.prototype"
Bar.prototype = .create(Foo.prototype);

// Beware! Now "Bar.prototype.constructor® is gone,
// and might need to be manually "fixed" if you're
// in the habit of relying on such properties!

Bar.prototype.myLabel = function() {
return this.label;

+i
var a = new Bar("a", "obj a");

a.myName(); // "a"
a.myLabel(); // "obj a"

Note: To understand why this points to a in the above code snippet, see
Chapter 2.

The important part is Bar.prototype = Object.create(Foo.prototype) .
Object.create(..) creates a "new" object out of thin air, and links that new
object's internal [[Prototype]l] to the object you specify (Foo.prototype in this
case).

In other words, that line says: "make a new 'Bar dot prototype' object that's linked

to 'Foo dot prototype'.

When function Bar() { .. } is declared, Bar , like any other function, has a
.prototype link to its default object. But that object is not linked to
Foo.prototype like we want. So, we create a new object that is linked as we

want, effectively throwing away the original incorrectly-linked object.

Note: A common mis-conception/confusion here is that either of the following
approaches would also work, but they do not work as you'd expect:

// doesn't work like you want!
Bar.prototype = Foo.prototype;

// works kinda like you want, but with
// side-effects you probably don't want :(
Bar.prototype = new Foo();

Bar.prototype = Foo.prototype doesn't create a new object for Bar.prototype to
be linked to. It just makes Bar.prototype be another reference to

Foo.prototype , which effectively links Bar directly to the same object as Foo
links to: Foo.prototype . This means when you start assigning, like

Bar.prototype.myLabel = ... , you're modifying not a separate object but the
shared Foo.prototype object itself, which would affect any objects linked to

Foo.prototype . This is almost certainly not what you want. If it is what you want,
then you likely don't need Bar at all, and should just use only Foo and make
your code simpler.

Bar.prototype = new Foo() does in fact create a new object which is duly linked
to Foo.prototype as we'd want. But, it uses the Foo(..) "constructor call" to do
it. If that function has any side-effects (such as logging, changing state,
registering against other objects, adding data properties to this , etc.), those
side-effects happen at the time of this linking (and likely against the wrong
object!), rather than only when the eventual Bar() "descendants" are created, as
would likely be expected.

So, we're left with using Object.create(..) to make a new object that's properly
linked, but without having the side-effects of calling Foo(..) . The slight downside
is that we have to create a new object, throwing the old one away, instead of
modifying the existing default object we're provided.

It would be nice if there was a standard and reliable way to modify the linkage of
an existing object. Prior to ES6, there's a non-standard and not fully-cross-
browser way, via the .__proto__ property, which is settable. ES6 adds a
Object.setPrototype0f(..) helper utility, which does the trick in a standard and
predictable way.

Compare the pre-ES6 and ES6-standardized techniques for linking
Bar.prototype tO Foo.prototype , side-by-side:

Bar.prototype = .create(Foo.prototype);

.setPrototypeOf(Bar.prototype, Foo.prototype);

Ignoring the slight performance disadvantage (throwing away an object that's later
garbage collected) of the object.create(..) approach, it's a little bit shorter and
may be perhaps a little easier to read than the ES6+ approach. But it's probably a
syntactic wash either way.

Inspecting "Class" Relationships

What if you have an object like a and want to find out what object (if any) it
delegates to? Inspecting an instance (just an object in JS) for its inheritance
ancestry (delegation linkage in JS) is often called introspection (or reflection) in
traditional class-oriented environments.

Consider:

function Foo() {
+
Foo.prototype.blah = ...;

var a = new Foo();

How do we then introspect a to find out its "ancestry" (delegation linkage)? The
first approach embraces the "class" confusion:

a instanceof Foo;

The instanceof operator takes a plain object as its left-hand operand and a

function as its right-hand operand. The question instanceof answers is: in the

entire [[Prototype]l] chain of a , does the object arbitrarily pointed to by
Foo.prototype ever appear?

Unfortunately, this means that you can only inquire about the "ancestry" of some

object (a) if you have some function (Foo , with its attached .prototype
reference) to test with. If you have two arbitrary objects, say a and b, and want

to find out if the objects are related to each other through a [[Prototypel]l chain,
instanceof alone can't help.

Note: If you use the built-in .bind(..) utility to make a hard-bound function (see
Chapter 2), the function created will not have a .prototype property. Using
instanceof with such a function transparently substitutes the .prototype of the
target function that the hard-bound function was created from.

It's fairly uncommon to use hard-bound functions as "constructor calls", but if you
do, it will behave as if the original target function was invoked instead, which
means that using instanceof with a hard-bound function also behaves according
to the original function.

This snippet illustrates the ridiculousness of trying to reason about relationships
between two objects using "class" semantics and instanceof :

function isRelatedTo() {
function F(){}
F.prototype = 02;
return ol instanceof F;

var a = {};
var b = .create(a);

isRelatedTo(b, a);

Inside isRelatedTo(..) , we borrow a throw-away function F , reassign its
.prototype to arbitrarily point to some object o2 , then ask if o1 is an "instance
of" F . Obviously o1 isn't actually inherited or descended or even constructed

from F, so it should be clear why this kind of exercise is silly and confusing. The
problem comes down to the awkwardness of class semantics forced upon
JavaScript, in this case as revealed by the indirect semantics of instanceof .

The second, and much cleaner, approach to [[Prototypel]l reflection is:

Foo.prototype.isPrototypeOf(a);

Notice that in this case, we don't really care about (or even need) Foo , we just

need an object (in our case, arbitrarily labeled Foo.prototype) to test against

another object. The question isPrototype0f(..) answers is: in the entire
[[Prototype]] chain of a, does Foo.prototype ever appear?

Same question, and exact same answer. But in this second approach, we don't
actually need the indirection of referencing a function (Foo) whose .prototype
property will automatically be consulted.

We just need two objects to inspect a relationship between them. For example:

b.isPrototype0f(c);

Notice, this approach doesn't require a function ("class") at all. It just uses object
references directly to b and ¢ , and inquires about their relationship. In other

words, our isRelatedTo(..) utility above is built-in to the language, and it's called
isPrototypeOf(..)

We can also directly retrieve the [[Prototypel]l of an object. As of ES5, the
standard way to do this is:

.getPrototypeOf(a);

And you'll notice that object reference is what we'd expect:

.getPrototype0Of(a) === Foo.prototype;

Most browsers (not all!) have also long supported a non-standard alternate way of
accessing the internal [[Prototypell :

a.__proto__ === Foo.prototype;

The strange .__proto__ (not standardized until ES6!) property "magically”
retrieves the internal [[Prototypel]l of an object as a reference, which is quite

helpful if you want to directly inspect (or even traverse: ._ proto__._ proto_ ...)
the chain.
Just as we saw earlier with .constructor , .__proto__ doesn't actually exist on

the object you're inspecting (a in our running example). In fact, it exists (non-
enumerable; see Chapter 2) on the built-in 0bject.prototype , along with the
other common utilities (.toString() , .isPrototypeOf(..) , etc).

Moreover, ._ proto__ looks like a property, but it's actually more appropriate to
think of it as a getter/setter (see Chapter 3).

Roughly, we could envision ._ proto__ implemented (see Chapter 3 for object
property definitions) like this:

.defineProperty(.prototype, "_ proto_ ", {
get: function() {
return .getPrototypeOf(this);
}l

set: function(o) {

.setPrototype0f(this, o);
return o;
+
)

So, when we access (retrieve the value of) a.__proto__, it's like calling
a.__proto__() (calling the getter function). That function call has a asits this
even though the getter function exists on the object.prototype object (see
Chapter 2 for this binding rules), so it's just like saying object.getPrototype0f (

a).

.__proto__ is also a settable property, just like using ES6's
Object.setPrototype0f(..) shown earlier. However, generally you should not
change the [[Prototype]l] of an existing object.

There are some very complex, advanced techniques used deep in some
frameworks that allow tricks like "subclassing" an Array , but this is commonly
frowned on in general programming practice, as it usually leads to much harder to
understand/maintain code.

Note: As of ES6, the class keyword will allow something that approximates
"subclassing" of built-in's like Array . See Appendix A for discussion of the
class syntax added in ES6.

The only other narrow exception (as mentioned earlier) would be setting the
[[Prototypel] of a default function's .prototype object to reference some other
object (besides object.prototype). That would avoid replacing that default object
entirely with a new linked object. Otherwise, it's best to treat object
[[Prototype]l] linkage as a read-only characteristic for ease of reading your
code later.

Note: The JavaScript community unofficially coined a term for the double-
underscore, specifically the leading one in properties like __proto__ : "dunder".
So, the "cool kids" in JavaScript would generally pronounce __proto__ as
"dunder proto".

Object Links

As we've now seen, the [[Prototype]l] mechanism is an internal link that exists
on one object which references some other object.

This linkage is (primarily) exercised when a property/method reference is made
against the first object, and no such property/method exists. In that case, the

[[Prototypel] linkage tells the engine to look for the property/method on the
linked-to object. In turn, if that object cannot fulfill the look-up, its [[Prototypell
is followed, and so on. This series of links between objects forms what is called
the "prototype chain".

Create() ingLinks

We've thoroughly debunked why JavaScript's [[Prototype]l] mechanism is not
like classes, and we've seen how it instead creates links between proper objects.

What's the point of the [[Prototype]l] mechanism? Why is it so common for JS
developers to go to so much effort (emulating classes) in their code to wire up
these linkages?

Remember we said much earlier in this chapter that object.create(..) would be
a hero? Now, we're ready to see how.

var foo = {
something: function() {
.log("Tell me something good...");
}
H¥

var bar = .create(foo);

bar.something();

Object.create(..) creates a new object (bar) linked to the object we specified
(foo), which gives us all the power (delegation) of the [[Prototype]l]
mechanism, but without any of the unnecessary complication of new functions
acting as classes and constructor calls, confusing .prototype and .constructor
references, or any of that extra stuff.

Note: oObject.create(null) creates an object that has an empty (aka, null)
[[Prototypel]l linkage, and thus the object can't delegate anywhere. Since such
an object has no prototype chain, the instanceof operator (explained earlier) has

nothing to check, so it will always return false . These special

empty- [[Prototypel] objects are often called "dictionaries" as they are typically
used purely for storing data in properties, mostly because they have no possible
surprise effects from any delegated properties/functions on the [[Prototypell
chain, and are thus purely flat data storage.

We don't need classes to create meaningful relationships between two objects.
The only thing we should really care about is objects linked together for
delegation, and object.create(..) gives us that linkage without all the class
cruft.

Object.create() Polyfilled

Object.create(..) was added in ES5. You may need to support pre-ES5
environments (like older IE's), so let's take a look at a simple partial polyfill for
Object.create(..) that gives us the capability that we need even in those older
JS environments:

if (! .create) {
.create = function(o) {
function F(){}
F.prototype = o;
return new F();

+;

This polyfill works by using a throw-away F function and overriding its
.prototype property to point to the object we want to link to. Then we use new
F() construction to make a new object that will be linked as we specified.

This usage of oObject.create(..) is by far the most common usage, because it's
the part that can be polyfilled. There's an additional set of functionality that the
standard ES5 built-in object.create(..) provides, which is not polyfillable for
pre-ES5. As such, this capability is far-less commonly used. For completeness
sake, let's look at that additional functionality:

var anotherObject = {
a:

4
var myObject = .create(anotherObject, {
b: {
enumerable: ,
writable: o
configurable: ,
value:
b
c: {
enumerable: ,
writable: ,
configurable: ,
value:
+
)

myObject.hasOwnProperty("a");
myObject.hasOwnProperty("b");
myObject.hasOwnProperty("c");

myObject.a;
myObject.b;
myObject.c;

The second argument to Object.create(..) specifies property names to add to
the newly created object, via declaring each new property's property descriptor
(see Chapter 3). Because polyfilling property descriptors into pre-ES5 is not
possible, this additional functionality on object.create(..) also cannot be
polyfilled.

The vast majority of usage of 0Object.create(..) uses the polyfill-safe subset of
functionality, so most developers are fine with using the partial polyfill in pre-ES5
environments.

Some developers take a much stricter view, which is that no function should be
polyfilled unless it can be fully polyfilled. Since object.create(..) is one of those
partial-polyfill'able utilities, this narrower perspective says that if you need to use
any of the functionality of object.create(..) in a pre-ES5 environment, instead
of polyfilling, you should use a custom utility, and stay away from using the name
Object.create entirely. You could instead define your own utility, like:

function createAndLinkObject(o) {
function F(){}
F.prototype = o;
return new F();

}

var anotherObject = {
a:

Y
var myObject = createAndLinkObject(anotherObject);

myObject.a;

| do not share this strict opinion. | fully endorse the common partial-polyfill of
Object.create(..) as shown above, and using it in your code even in pre-ES5.
I'll leave it to you to make your own decision.

Links As Fallbacks?

It may be tempting to think that these links between objects primarily provide a

sort of fallback for "missing" properties or methods. While that may be an

observed outcome, | don't think it represents the right way of thinking about
[[Prototypel] .

Consider:

var anotherObject = {
cool: function() {
.log("cool!");
+
18

var myObject = .create(anotherObject);

myObject.cool();

That code will work by virtue of [[Prototypel] , but if you wrote it that way so that

anotherObject was acting as a fallback just in case myobject couldn't handle
some property/method that some developer may try to call, odds are that your
software is going to be a bit more "magical" and harder to understand and
maintain.

That's not to say there aren't cases where fallbacks are an appropriate design
pattern, but it's not very common or idiomatic in JS, so if you find yourself doing
s0, you might want to take a step back and reconsider if that's really appropriate
and sensible design.

Note: In ES6, an advanced functionality called Proxy is introduced which can
provide something of a "method not found" type of behavior. Proxy is beyond the
scope of this book, but will be covered in detail in a later book in the "You Don't
Know JS" series.

Don't miss an important but nuanced point here.

Designing software where you intend for a developer to, for instance, call
myObject.cool() and have that work even though there is no cool() method on
myObject introduces some "magic" into your API design that can be surprising for

future developers who maintain your software.

You can however design your API with less "magic" to it, but still take advantage
of the power of [[Prototypel]l linkage.

var anotherObject = {
cool: function() {
.log("cool!");
+
Y

var myObject = .create(anotherObject);

myObject.doCool = function() {
this.cool();

4

myObject.doCool();

Here, we call myobject.doCool() , which is a method that actually exists on
myObject , making our APl design more explicit (less "magical"). Internally, our
implementation follows the delegation design pattern (see Chapter 6), taking
advantage of [[Prototypell delegation to anotherObject.cool() .

In other words, delegation will tend to be less surprising/confusing if it's an
internal implementation detail rather than plainly exposed in your API design. We
will expound on delegation in great detail in the next chapter.

Review (TL;DR)

When attempting a property access on an object that doesn't have that property,
the object's internal [[Prototypell linkage defines where the [I[Getl] operation
(see Chapter 3) should look next. This cascading linkage from object to object
essentially defines a "prototype chain" (somewhat similar to a nested scope
chain) of objects to traverse for property resolution.

All normal objects have the built-in 0object.prototype as the top of the prototype
chain (like the global scope in scope look-up), where property resolution will stop
if not found anywhere prior in the chain. toString() , value0f() , and several

other common utilities exist on this object.prototype object, explaining how all
objects in the language are able to access them.

The most common way to get two objects linked to each other is using the new
keyword with a function call, which among its four steps (see Chapter 2), it
creates a new object linked to another object.

The "another object" that the new object is linked to happens to be the object
referenced by the arbitrarily named .prototype property of the function called
with new . Functions called with new are often called "constructors”, despite the
fact that they are not actually instantiating a class as constructors do in traditional
class-oriented languages.

While these JavaScript mechanisms can seem to resemble "class instantiation”
and "class inheritance" from traditional class-oriented languages, the key
distinction is that in JavaScript, no copies are made. Rather, objects end up linked
to each other via an internal [[Prototypel]l chain.

For a variety of reasons, not the least of which is terminology precedent,
"inheritance" (and "prototypal inheritance") and all the other OO terms just do not
make sense when considering how JavaScript actually works (not just applied to
our forced mental models).

Instead, "delegation" is a more appropriate term, because these relationships are
not copies but delegation links.

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Chapter 6: Behavior Delegation

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

In Chapter 5, we addressed the [[Prototypel]l mechanism in detail, and why it's
confusing and inappropriate (despite countless attempts for nearly two decades)
to describe it as "class" or "inheritance". We trudged through not only the fairly
verbose syntax (.prototype littering the code), but the various gotchas (like
surprising .constructor resolution or ugly pseudo-polymorphic syntax). We
explored variations of the "mixin" approach, which many people use to attempt to
smooth over such rough areas.

It's a common reaction at this point to wonder why it has to be so complex to do
something seemingly so simple. Now that we've pulled back the curtain and seen
just how dirty it all gets, it's not a surprise that most JS developers never dive this
deep, and instead relegate such mess to a "class" library to handle it for them.

| hope by now you're not content to just gloss over and leave such details to a
"black box" library. Let's now dig into how we could and should be thinking about
the object [[Prototypel] mechanism in JS, in a much simpler and more
straightforward way than the confusion of classes.

As a brief review of our conclusions from Chapter 5, the [[Prototype]]
mechanism is an internal link that exists on one object which references another
object.

This linkage is exercised when a property/method reference is made against the
first object, and no such property/method exists. In that case, the [[Prototypel]l
linkage tells the engine to look for the property/method on the linked-to object. In
turn, if that object cannot fulfill the look-up, its [[Prototypell is followed, and so
on. This series of links between objects forms what is called the "prototype chain".

In other words, the actual mechanism, the essence of what's important to the
functionality we can leverage in JavaScript, is all about objects being linked to
other objects.

That single observation is fundamental and critical to understanding the
motivations and approaches for the rest of this chapter!

Towards Delegation-Oriented Design

To properly focus our thoughts on how to use [[Prototypel]l in the most
straightforward way, we must recognize that it represents a fundamentally
different design pattern from classes (see Chapter 4).

Note: Some principles of class-oriented design are still very valid, so don't toss
out everything you know (just most of it!). For example, encapsulation is quite
powerful, and is compatible (though not as common) with delegation.

We need to try to change our thinking from the class/inheritance design pattern to
the behavior delegation design pattern. If you have done most or all of your
programming in your education/career thinking in classes, this may be
uncomfortable or feel unnatural. You may need to try this mental exercise quite a
few times to get the hang of this very different way of thinking.

I'm going to walk you through some theoretical exercises first, then we'll look side-
by-side at a more concrete example to give you practical context for your own
code.

Class Theory

Let's say we have several similar tasks ("XYZ", "ABC", etc) that we need to model
in our software.

With classes, the way you design the scenario is: define a general parent (base)
class like Task , defining shared behavior for all the "alike" tasks. Then, you
define child classes xyz and ABc , both of which inherit from Task , and each of
which adds specialized behavior to handle their respective tasks.

Importantly, the class design pattern will encourage you that to get the most out
of inheritance, you will want to employ method overriding (and polymorphism),
where you override the definition of some general Task method in your xyz
task, perhaps even making use of super to call to the base version of that
method while adding more behavior to it. You'll likely find quite a few places
where you can "abstract" out general behavior to the parent class and specialize
(override) it in your child classes.

Here's some loose pseudo-code for that scenario:

class Task {
id;

Task(ID) { id = ID; }
outputTask() { output(id); }
+

class XYZ inherits Task {
label;

XYZ(ID,Label) { super(ID); label = Label; }
outputTask() { super(); output(label); }
+

class ABC inherits Task {

b

Now, you can instantiate one or more copies of the xyz child class, and use
those instance(s) to perform task "XYZ". These instances have copies both of
the general Task defined behavior as well as the specific xyz defined behavior.
Likewise, instances of the ABC class would have copies of the Task behavior
and the specific ABC behavior. After construction, you will generally only interact
with these instances (and not the classes), as the instances each have copies of
all the behavior you need to do the intended task.

Delegation Theory

But now let's try to think about the same problem domain, but using behavior
delegation instead of classes.

You will first define an object (not a class, nor a function as most JS'rs would
lead you to believe) called Task , and it will have concrete behavior on it that
includes utility methods that various tasks can use (read: delegate to!). Then, for
each task ("XYZ", "ABC"), you define an object to hold that task-specific
data/behavior. You link your task-specific object(s) to the Task utility object,
allowing them to delegate to it when they need to.

Basically, you think about performing task "XYZ" as needing behaviors from two
sibling/peer objects (XYz and Task) to accomplish it. But rather than needing to
compose them together, via class copies, we can keep them in their separate
objects, and we can allow xyz object to delegate to Task when needed.

Here's some simple code to suggest how you accomplish that:

var Task = {

setID: function(ID) { this.id = ID; },
outputID: function() { .log(this.id); }
Y
var XYZ = .create(Task);
XYZ.prepareTask = function() {
this.setID(ID);
this.label = Label;
5:e

XYZ.outputTaskDetails = function() {
this.outputID();
.log(this.label);

In this code, Task and xyz are not classes (or functions), they're just objects.
XYz is setup via Object.create(..) to [[Prototypel] delegate tothe Task
object (see Chapter 5).

As compared to class-orientation (aka, OO -- object-oriented), | call this style of
code "OLOO" (objects-linked-to-other-objects). All we really care about is that the
XYz object delegates to the Task object (as does the ABC object).

In JavaScript, the [[Prototype]l] mechanism links objects to other objects.
There are no abstract mechanisms like "classes", no matter how much you try to
convince yourself otherwise. It's like paddling a canoe upstream: you can do it,
but you're choosing to go against the natural current, so it's obviously going to be
harder to get where you're going.

Some other differences to note with OLOO style code:

1. Both id and 1abel data members from the previous class example are

data properties directly on xvz (neither is on Task). In general, with
[[Prototypel] delegation involved, you want state to be on the
delegators (xyz , ABC), not on the delegate (Task).

2. With the class design pattern, we intentionally named outputTask the same
on both parent (Task) and child (xyz), so that we could take advantage of
overriding (polymorphism). In behavior delegation, we do the opposite: we
avoid if at all possible naming things the same at different levels of the

[[Prototypel] chain (called shadowing -- see Chapter 5), because having
those name collisions creates awkward/brittle syntax to disambiguate
references (see Chapter 4), and we want to avoid that if we can.

This design pattern calls for less of general method names which are prone
to overriding and instead more of descriptive method names, specific to the
type of behavior each object is doing. This can actually create easier to
understand/maintain code, because the names of methods (not only at
definition location but strewn throughout other code) are more obvious (self
documenting).

3. this.setID(ID); inside of a method on the xvz object first looks on xvz

for setin(..) , but since it doesn't find a method of that name on xyz ,
[[Prototypel] delegation means it can follow the link to Task to look for
setID(..) , which it of course finds. Moreover, because of implicit call-site
this binding rules (see Chapter 2), when setID(..) runs, even though the

method was found on Task , the this binding for that function call is xyz

exactly as we'd expect and want. We see the same thing with
this.outputID() laterin the code listing.

In other words, the general utility methods that exist on Task are available to
us while interacting with xvz , because Xxyz can delegate to Task .

Behavior Delegation means: let some object (XYz) provide a delegation (to
Task) for property or method references if not found on the object (xvz).

This is an extremely powerful design pattern, very distinct from the idea of parent
and child classes, inheritance, polymorphism, etc. Rather than organizing the
objects in your mind vertically, with Parents flowing down to Children, think of
objects side-by-side, as peers, with any direction of delegation links between the
objects as necessary.

Note: Delegation is more properly used as an internal implementation detail
rather than exposed directly in the API design. In the above example, we don't
necessarily intend with our AP| design for developers to call xyz.setid() (though
we can, of course!). We sorta hide the delegation as an internal detail of our API,
where XYz.prepareTask(..) delegates to Task.setID(..) . See the "Links As
Fallbacks?" discussion in Chapter 5 for more detail.

Mutual Delegation (Disallowed)

You cannot create a cycle where two or more objects are mutually delegated (bi-
directionally) to each other. If you make B linkedto A, andthentrytolink A to
B , you will get an error.

It's a shame (not terribly surprising, but mildly annoying) that this is disallowed. If
you made a reference to a property/method which didn't exist in either place,
you'd have an infinite recursion on the [[Prototypell loop. But if all references
were strictly present, then B could delegate to A , and vice versa, and it could
work. This would mean you could use either object to delegate to the other, for
various tasks. There are a few niche use-cases where this might be helpful.

But it's disallowed because engine implementors have observed that it's more
performant to check for (and reject!) the infinite circular reference once at set-time
rather than needing to have the performance hit of that guard check every time
you look-up a property on an object.

Debugged

We'll briefly cover a subtle detail that can be confusing to developers. In general,
the JS specification does not control how browser developer tools should
represent specific values/structures to a developer, so each browser/engine is

free to interpret such things as they see fit. As such, browsers/tools don't always
agree. Specifically, the behavior we will now examine is currently observed only in
Chrome's Developer Tools.

Consider this traditional "class constructor" style JS code, as it would appear in
the console of Chrome Developer Tools:

function Foo() {}
var al = new Foo();

al;

Let's look at the last line of that snippet: the output of evaluating the a1
expression, which prints Foo {} . If you try this same code in Firefox, you will
likely see object {} . Why the difference? What do these outputs mean?

Chrome is essentially saying "{} is an empty object that was constructed by a

function with name 'Foo™. Firefox is saying "{} is an empty object of general

construction from Object". The subtle difference is that Chrome is actively
tracking, as an internal property, the name of the actual function that did the
construction, whereas other browsers don't track that additional information.

It would be tempting to attempt to explain this with JavaScript mechanisms:

function Foo() {}
var al = new Foo();
al.constructor;

al.constructor.name;

So, is that how Chrome is outputting "Foo", by simply examining the object's
.constructor.name ? Confusingly, the answer is both "yes" and "no".

Consider this code:

function Foo() {}
var al = new Foo();
Foo.prototype.constructor = function Gotcha(){};

al.constructor;
al.constructor.name;

al;
Even though we change al.constructor.name to legitimately be something else
("Gotcha"), Chrome's console still uses the "Foo" name.

So, it would appear the answer to previous question (does it use
.constructor.name ?)is no, it must track it somewhere else, internally.

But, Not so fast! Let's see how this kind of behavior works with OLOO-style code:

var Foo = {};
var al = .create(Foo);
al;

.defineProperty(Foo, "constructor", {
enumerable: ,
value: function Gotcha(){}

3);

al;

Ah-ha! Gotcha! Here, Chrome's console did find and use the .constructor.name .
Actually, while writing this book, this exact behavior was identified as a bug in
Chrome, and by the time you're reading this, it may have already been fixed. So
you may instead have seen the corrected ai1; // Object {} .

Aside from that bug, the internal tracking (apparently only for debug output
purposes) of the "constructor name" that Chrome does (shown in the earlier
snippets) is an intentional Chrome-only extension of behavior beyond what the JS
specification calls for.

If you don't use a "constructor" to make your objects, as we've discouraged with
OLOO-style code here in this chapter, then you'll get objects that Chrome does
not track an internal "constructor name" for, and such objects will correctly only be
outputted as "Object {}", meaning "object generated from Object() construction".

Don't think this represents a drawback of OLOO-style coding. When you code
with OLOO and behavior delegation as your design pattern, who "constructed"
(that is, which function was called with new ?) some object is an irrelevant detail.
Chrome's specific internal "constructor name" tracking is really only useful if
you're fully embracing "class-style" coding, but is moot if you're instead embracing
OLOO delegation.

Mental Models Compared

Now that you can see a difference between "class" and "delegation" design
patterns, at least theoretically, let's see the implications these design patterns
have on the mental models we use to reason about our code.

We'll examine some more theoretical ("Foo", "Bar") code, and compare both ways
(OO0 vs. OLOO) of implementing the code. The first snippet uses the classical
("prototypal") OO style:

function Foo(who) {
this.me = who;

+

Foo.prototype.identify = function() {
return "I am " + this.me;

3

function Bar(who) {
Foo.call(this, who);
+
Bar.prototype = .create(Foo.prototype);

Bar.prototype.speak = function() {
alert("Hello, " + this.identify() + ".");
+

var bl = new Bar("b1");
var b2 = new Bar("b2");

bl.speak();
b2.speak();

Parent class Foo , inherited by child class Bar , which is then instantiated twice
as bl and b2 . What we have is b1 delegating to Bar.prototype which
delegates to Foo.prototype . This should look fairly familiar to you, at this point.
Nothing too ground-breaking going on.

Now, let's implement the exact same functionality using OLOO style code:

var Foo = {
init: function() {
this.me = who;
by
identify: function() {
return "I am " + this.me;
+
+;

var Bar = .create(Foo);

Bar.speak = function() {

alert("Hello, " + this.identify() + ".");
18
var bl = .create(Bar);
bl.init("b1");
var b2 = .create(Bar);

b2.init("b2");

bl.speak();
b2.speak();

We take exactly the same advantage of [[Prototypel]l delegation from b1 to
Bar t0 Foo as we did in the previous snippet between b1, Bar.prototype ,
and Foo.prototype . We still have the same 3 objects linked together.

But, importantly, we've greatly simplified all the other stuff going on, because now
we just set up objects linked to each other, without needing all the cruft and
confusion of things that look (but don't behave!) like classes, with constructors

and prototypes and new calls.

Ask yourself: if | can get the same functionality with OLOO style code as | do with
"class" style code, but OLOO is simpler and has less things to think about, isn't
OLOO better?

Let's examine the mental models involved between these two snippets.

First, the class-style code snippet implies this mental model of entities and their
relationships:

- constructor

toString ()
valueOfl)
hasOwnProperty()
isPrototypeOf()

s

- constructor

Function()

. prototype

[[Prototype]]

call()
apply()

. __proto__
[[Prototype]]

[[Prototypeﬁ

. constructor
identify()
. prototype .__proto__
[[Prototype]]
[
. Legend
g
\-\%ﬁ gg O Function
\"5“’?, ale
b, & [] object
) speak() —> P /Relationshi
prototype roperty / Relationship
------------------------- ----» Implied relationship via
[[Prototype]] delegation
b1 b2
me me
......... - constructor -__proto__ ___prato__
[[Prototype]] [[Prototype]]

_constructor

Actually, that's a little unfair/misleading, because it's showing a lot of extra detail
that you don't technically need to know at all times (though you do need to
understand it!). One take-away is that it's quite a complex series of relationships.
But another take-away: if you spend the time to follow those relationship arrows
around, there's an amazing amount of internal consistency in JS's
mechanisms.

For instance, the ability of a JS function to access call(..) , apply(..) , and

bind(..) (see Chapter 2)is because functions themselves are objects, and
function-objects also have a [[Prototypel]l linkage, to the Function.prototype
object, which defines those default methods that any function-object can delegate
to. JS can do those things, and you can too!.

OK, let's now look at a slightly simplified version of that diagram which is a little
more "fair" for comparison -- it shows only the relevant entities and relationships.

toString()

. prototype valueOf(}
prototyp hasOwnProperty()

isPrototypeOfi)

. constructor
identify()

______________ - profotype .__proto__
:r [[Prototype]]
L \ .
: L _ Legend
; . 9} 7
P " S, s 5‘ O Function
: \\'532, |2
P s, & [] object
L Ny speak) —> Property / Relationshi
Vo . prototype roperty / Relationship
----» Implied relationship via
P [[Prototype]] delegation
: b1 b2
P me me
P - constructor | -_proto__ ._proto_
: ([Prototype]] [Prototype]]

_constructor

Still pretty complex, eh? The dotted lines are depicting the implied relationships
when you setup the "inheritance" between Foo.prototype and Bar.prototype
and haven't yet fixed the missing .constructor property reference (see
"Constructor Redux" in Chapter 5). Even with those dotted lines removed, the
mental model is still an awful lot to juggle every time you work with object
linkages.

Now, let's look at the mental model for OLOO-style code:

Object.prototype

toString()
valueOifl)
hasOwnProperty()
isPrototypeOf()
Foo
init()
identify() .__proto__
[[Prototype]]
A
Legend

__proto
[[Prototype]]

[] object

— Property / Relationship

Bar

speak()

b1

me me

[[Prototype]] [[Prototype]]

As you can see comparing them, it's quite obvious that OLOO-style code has
vastly less stuff to worry about, because OLOO-style code embraces the fact that
the only thing we ever really cared about was the objects linked to other
objects.

All the other "class" cruft was a confusing and complex way of getting the same
end result. Remove that stuff, and things get much simpler (without losing any
capability).

Classes vs. Objects

We've just seen various theoretical explorations and mental models of "classes"
vs. "behavior delegation". But, let's now look at more concrete code scenarios to
show how'd you actually use these ideas.

We'll first examine a typical scenario in front-end web dev: creating Ul widgets
(buttons, drop-downs, etc).

Widget "Classes"

Because you're probably still so used to the OO design pattern, you'll likely
immediately think of this problem domain in terms of a parent class (perhaps
called widget) with all the common base widget behavior, and then child derived
classes for specific widget types (like Button).

Note: We're going to use jQuery here for DOM and CSS manipulation, only
because it's a detail we don't really care about for the purposes of our current
discussion. None of this code cares which JS framework (jQuery, Dojo, YUI, etc),
if any, you might solve such mundane tasks with.

Let's examine how we'd implement the "class" design in classic-style pure JS
without any "class" helper library or syntax:

// Parent class

function Widget() {
this.width = width || B
this.height = height || ;
this.$elem = g
}
Widget.prototype.render = function(){

if (this.$elem) {
this.$elem.css({
width: this.width + "px",
height: this.height + "px"
}).appendTo($where);

+;

// Child class

function Button() {
// "super" constructor call
Widget.call(this, width, height);
this.label = label || "Default";

this.$elem = $("<button>").text(this.label);

// make “Button® "inherit" from “Widget®
Button.prototype = .create(Widget.prototype)

// override base "inherited" ‘render(..)’
Button.prototype.render = function() {

// "super" call

Widget.prototype.render.call(this, $where);

this.$elem.click(this.onClick.bind(this));
g

Button.prototype.onClick = function() {
.log("Button '" + this.label + "' clicked!");

+;

$().ready(function(){
var $body = $(.body);
var btnl = new Button(, , "Hello");
var btn2 = new Button(5 , "World");
btnl.render($body);
btn2.render($body);

)

OO design patterns tell us to declare a base render(..) in the parent class, then
override it in our child class, but not to replace it per se, rather to augment the
base functionality with button-specific behavior.

Notice the ugliness of explicit pseudo-polymorphism (see Chapter 4) with
Widget.call and Widget.prototype.render.call references for faking "super"
calls from the child "class" methods back up to the "parent” class base methods.
Yuck.

ES6 class sugar

We cover ES6 class syntax sugar in detail in Appendix A, but let's briefly
demonstrate how we'd implement the same code using class :

class Widget {
constructor(width,height) {
this.width = width || H
this.height = height || H
this.$elem = 8
b
render($where) {
if (this.$elem) {
this.$elem.css({
width: this.width + "px",
height: this.height + "px"
}).appendTo($where);

class Button extends Widget {

constructor(width,height, label) {

super(width, height);

this.label = label || "Default";

this.$elem = $("<button>").text(this.label);
+
render($where) {

super.render($where);

this.$elem.click(this.onClick.bind(this));
+
onClick(evt) {

.log("Button '" + this.label + "' clicked!");

+

+

$().ready(function(){
var $body = $(.body);
var btnl = new Button(, , "Hello");
var btn2 = new Button(D , "World");
btnl.render($body);
btn2.render($body);

%)g

Undoubtedly, a number of the syntax uglies of the previous classical approach
have been smoothed over with ES6's class . The presence of a super(..) in
particular seems quite nice (though when you dig into it, it's not all roses!).

Despite syntactic improvements, these are not real classes, as they still operate
on top of the [[Prototypel] mechanism. They suffer from all the same mental-
model mismatches we explored in Chapters 4, 5 and thus far in this chapter.

Appendix A will expound on the ES6 class syntax and its implications in detail.
We'll see why solving syntax hiccups doesn't substantially solve our class
confusions in JS, though it makes a valiant effort masquerading as a solution!

Whether you use the classic prototypal syntax or the new ES6 sugar, you've still
made a choice to model the problem domain (Ul widgets) with "classes". And as
the previous few chapters try to demonstrate, this choice in JavaScript is opting

you into extra headaches and mental tax.

Delegating Widget Objects
Here's our simpler widget / Button example, using OLOO style delegation:

var Widget = {

init: function()H{
this.width = width || H
this.height = height || H
this.$elem = g

By

insert: function(){

if (this.$elem) {
this.$elem.css({
width: this.width + "px",
height: this.height + "px"
}).appendTo($where);

}

+
Y
var Button = .create(Widget)
Button.setup = function()

// delegated call

this.init(width, height);

this.label = label || "Default";

this.$elem = $("<button>").text(this.label);
18
Button.build = function() {

// delegated call

this.insert($where);

this.$elem.click(this.onClick.bind(this));
+

Button.onClick = function() {
.log("Button '" + this.label + "' clicked!");

X

$().ready(function(){
var $body = $(.body);
var btnl = .create(Button)

btnl.setup(, , "Hello")

var btn2 = .create(Button);
btn2.setup(, , "World")

btnl.build($body);
btn2.build($body);

With this OLOO-style approach, we don't think of widget as a parent and
Button as a child. Rather, widget is just an object and is sort of a utility

collection that any specific type of widget might want to delegate to, and Button
is also just a stand-alone object (with a delegation link to widget , of course!).

From a design pattern perspective, we didn't share the same method name
render(..) in both objects, the way classes suggest, but instead we chose

different names (insert(..) and build(..)) that were more descriptive of what

task each does specifically. The initialization methods are called init(..) and
setup(..) , respectively, for the same reasons.

Not only does this delegation design pattern suggest different and more
descriptive names (rather than shared and more generic names), but doing so
with OLOO happens to avoid the ugliness of the explicit pseudo-polymorphic calls
(widget.call and Widget.prototype.render.call), as you can see by the simple,
relative, delegated calls to this.init(..) and this.insert(..) .

Syntactically, we also don't have any constructors, .prototype Or new present,
as they are, in fact, just unnecessary cruft.

Now, if you're paying close attention, you may notice that what was previously just
one call (var btnl = new Button(..))is now two calls (var btnl =
Object.create(Button) and btnl.setup(..)). Initially this may seem like a
drawback (more code).

However, even this is something that's a pro of OLOO style code as compared
to classical prototype style code. How?

With class constructors, you are "forced" (not really, but strongly suggested) to do
both construction and initialization in the same step. However, there are many
cases where being able to do these two steps separately (as you do with OLOQ!)
is more flexible.

For example, let's say you create all your instances in a pool at the beginning of
your program, but you wait to initialize them with specific setup until they are
pulled from the pool and used. We showed the two calls happening right next to
each other, but of course they can happen at very different times and in very
different parts of our code, as needed.

OLOO supports better the principle of separation of concerns, where creation and
initialization are not necessarily conflated into the same operation.

Simpler Design

In addition to OLOO providing ostensibly simpler (and more flexible!) code,
behavior delegation as a pattern can actually lead to simpler code architecture.
Let's examine one last example that illustrates how OLOO simplifies your overall
design.

The scenario we'll examine is two controller objects, one for handling the login
form of a web page, and another for actually handling the authentication
(communication) with the server.

We'll need a utility helper for making the Ajax communication to the server. We'll
use jQuery (though any framework would do fine), since it handles not only the
Ajax for us, but it returns a promise-like answer so that we can listen for the
response in our calling code with .then(..) .

Note: We don't cover Promises here, but we will cover them in a future title of the
"You Don't Know JS" series.

Following the typical class design pattern, we'll break up the task into base
functionality in a class called controller , and then we'll derive two child classes,
LoginController and AuthController , which both inherit from controller and

specialize some of those base behaviors.

// Parent class
function Controller() {
this.errors = [];

H

Controller.prototype.showDialog = function() {
// display title & message to user in dialog

I

Controller.prototype.success = function(msg) {
this.showDialog("Success", msg);

b

Controller.prototype.failure = function() {
this.errors.push(err);
this.showDialog("Error", err);

+;

// Child class
function LoginController() {
Controller.call(this);

}
// Link child class to parent
LoginController.prototype = .create(Controller.prototype);
LoginController.prototype.getUser = function() {
return .getElementById("login_username").value;
+
LoginController.prototype.getPassword = function() {
return .getElementById("login_password").value;
g
LoginController.prototype.validateEntry = function() {
user = user || this.getUser();

pw = pw || this.getPassword();

if (!(user & pw)) {

return this.failure("Please enter a username & password!"™);
+
else if (pw.length < 5) {

return this.failure("Password must be 5+ characters!");

// got here? validated!

return]
g
// Override to extend base “failure()’
LoginController.prototype.failure = function() {

// "super" call

Controller.prototype.failure.call(this, "Login invalid: " + err);

+

// Child class
function AuthController() {
Controller.call(this);
// in addition to inheritance, we also need composition
this.login = login;
H
// Link child class to parent
AuthController.prototype = .create(Controller.prototype);
AuthController.prototype.server = function() {
return $.ajax({
url: url,
data: data
)
+;
AuthController.prototype.checkAuth = function() {
var user = this.login.getUser();
var pw = this.login.getPassword();

if (this.login.validateEntry(user, pw)) {
this.server("/check-auth",{
user: user,
pw: pw
)
.then(this.success.bind(this))
.fail(this.failure.bind(this));

+
// Override to extend base “success()’
AuthController.prototype.success = function() {

// "super" call

Controller.prototype.success.call(this, "Authenticated!");
I
// Override to extend base ‘failure()®
AuthController.prototype.failure = function(err) {

// "super" call

Controller.prototype.failure.call(this, "Auth Failed: " + err);
+

var auth = new AuthController(
// in addition to inheritance, we also need composition
new LoginController()

);

auth.checkAuth();

We have base behaviors that all controllers share, which are success(..) ,
failure(..) and showDialog(..) . Our child classes LoginController and
AuthController override failure(..) and success(..) to augment the default

base class behavior. Also note that AuthController needs an instance of
LoginController to interact with the login form, so that becomes a member data

property.

The other thing to mention is that we chose some composition to sprinkle in on
top of the inheritance. AuthController needs to know about LoginController , SO
we instantiate it (new LoginController()) and keep a class member property
called this.login to reference it, so that AuthController can invoke behavior
on LoginController .

Note: There might have been a slight temptation to make AuthController inherit
from LoginController , or vice versa, such that we had virtual composition
through the inheritance chain. But this is a strongly clear example of what's wrong
with class inheritance as the model for the problem domain, because neither
AuthController noOr LoginController are specializing base behavior of the other,
so inheritance between them makes little sense except if classes are your only
design pattern. Instead, we layered in some simple composition and now they can
cooperate, while still both benefiting from the inheritance from the parent base

Controller .

If you're familiar with class-oriented (OO) design, this should all look pretty
familiar and natural.

De-class-ified

But, do we really need to model this problem with a parent controller class,
two child classes, and some composition? Is there a way to take advantage of
OLOO-style behavior delegation and have a much simpler design? Yes!

var LoginController = {
errors: [1,
getUser: function() {

return .getElementById("login_username").value;
+
getPassword: function() {
return .getElementById("login_password").value;
}l
validateEntry: function() {
user = user || this.getUser();
pw = pw || this.getPassword();
if (!(user && pw)) {
return this.failure("Please enter a username & password!");
}
else if (pw.length < 5) {
return this.failure("Password must be 5+ characters!");
}
// got here? validated!
return g
+
showDialog: function() {
// display success message to user in dialog
}I

failure: function(err) {
this.errors.push(err);
this.showDialog("Error", "Login invalid:

+ err);

var AuthController = .create(LoginController)

AuthController.errors = [];
AuthController.checkAuth = function() {
var user = this.getUser();
var pw = this.getPassword();

if (this.validateEntry(user, pw)) {
this.server("/check-auth",{
user: user,

pw: pw
1)
.then(this.accepted.bind(this))
.fail(this.rejected.bind(this));
+
g
AuthController.server = function() {
return $.ajax({
url: url,
data: data
)
+

AuthController.accepted = function() {
this.showDialog("Success", "Authenticated!")

Y

AuthController.rejected = function() {
this.failure("Auth Failed: " + err);

b

Since AuthController is just an object (sois LoginController), we don't need to
instantiate (like new AuthController()) to perform our task. All we need to do is:

AuthController.checkAuth();

Of course, with OLOO, if you do need to create one or more additional objects in
the delegation chain, that's easy, and still doesn't require anything like class
instantiation:

var controllerl = .create(AuthController)
var controller2 .create(AuthController)

With behavior delegation, AuthController and LoginController are just
objects, horizontal peers of each other, and are not arranged or related as
parents and children in class-orientation. We somewhat arbitrarily chose to have

AuthController delegate to LoginController -- it would have been just as valid
for the delegation to go the reverse direction.

The main takeaway from this second code listing is that we only have two entities
(LoginController and AuthController), not three as before.

We didn't need a base controller class to "share" behavior between the two,
because delegation is a powerful enough mechanism to give us the functionality
we need. We also, as noted before, don't need to instantiate our classes to work

with them, because there are no classes, just the objects themselves.
Furthermore, there's no need for composition as delegation gives the two objects
the ability to cooperate differentially as needed.

Lastly, we avoided the polymorphism pitfalls of class-oriented design by not
having the names success(..) and failure(..) be the same on both objects,
which would have required ugly explicit pseudopolymorphism. Instead, we called
them accepted() and rejected(..) on AuthController --slightly more
descriptive names for their specific tasks.

Bottom line: we end up with the same capability, but a (significantly) simpler
design. That's the power of OLOO-style code and the power of the behavior
delegation design pattern.

Nicer Syntax

One of the nicer things that makes ES6's class so deceptively attractive (see
Appendix A on why to avoid it!) is the short-hand syntax for declaring class
methods:

class Foo {
methodName() { }
+

We get to drop the word function from the declaration, which makes JS
developers everywhere cheer!

And you may have noticed and been frustrated that the suggested OLOO syntax
above has lots of function appearances, which seems like a bit of a detractor to
the goal of OLOO simplification. But it doesn't have to be that way!

As of ES6, we can use concise method declarations in any object literal, so an
object in OLOO style can be declared this way (same short-hand sugar as with
class body syntax):

var LoginController = {
errors: [],
getUser() {

Bp
getPassword() {

I

About the only difference is that object literals will still require , comma
separators between elements whereas class syntax doesn't. Pretty minor
concession in the whole scheme of things.

Moreover, as of ES6, the clunkier syntax you use (like for the AuthController
definition), where you're assigning properties individually and not using an object
literal, can be re-written using an object literal (so that you can use concise

methods), and you can just modify that object's [[Prototypel]l with
Object.setPrototypeOf(..) , like this:

var AuthController = {
errors: [],
checkAuth() {

}I
server(url,data) {

I

.setPrototypeOf(AuthController, LoginController);

OLOO-style as of ES6, with concise methods, is a lot friendlier than it was
before (and even then, it was much simpler and nicer than classical prototype-
style code). You don't have to opt for class (complexity) to get nice clean object
syntax!

Unlexical

There is one drawback to concise methods that's subtle but important to note.
Consider this code:

var Foo = {

bar() { +

baz: function baz() { +
+;

Here's the syntactic de-sugaring that expresses how that code will operate:

var Foo = {
bar: function() { Pe
baz: function baz() { +
18

See the difference? The bar() short-hand became an anonymous function
expression (function()..) attached to the bar property, because the function
object itself has no name identifier. Compare that to the manually specified named
function expression (function baz()..) which has a lexical name identifier baz

in addition to being attached to a .baz property.

So what? In the "Scope & Closures” title of this "You Don't Know JS" book series,
we cover the three main downsides of anonymous function expressions in detail.
We'll just briefly repeat them so we can compare to the concise method short-
hand.

Lack of a name identifier on an anonymous function:

1. makes debugging stack traces harder
2. makes self-referencing (recursion, event (un)binding, etc) harder

3. makes code (a little bit) harder to understand
Items 1 and 3 don't apply to concise methods.

Even though the de-sugaring uses an anonymous function expression which
normally would have no name in stack traces, concise methods are specified to
set the internal name property of the function object accordingly, so stack traces
should be able to use it (though that's implementation dependent so not
guaranteed).

Item 2 is, unfortunately, still a drawback to concise methods. They will not have
a lexical identifier to use as a self-reference. Consider:

var Foo = {

bar: function(x) {
if (x < 10) {
return Foo.bar(x *x 2);
t
return x;
Y
baz: function baz(x) {
if (x < 10) {
return baz(x *);
}
return x;
+

The manual Foo.bar(xx2) reference above kind of suffices in this example, but
there are many cases where a function wouldn't necessarily be able to do that,
such as cases where the function is being shared in delegation across different
objects, using this binding, etc. You would want to use a real self-reference,
and the function object's name identifier is the best way to accomplish that.

Just be aware of this caveat for concise methods, and if you run into such issues
with lack of self-reference, make sure to forgo the concise method syntax just for
that declaration in favor of the manual named function expression declaration
form: baz: function baz(){..} .

Introspection

If you've spent much time with class oriented programming (either in JS or other
languages), you're probably familiar with type infrospection: inspecting an
instance to find out what kind of object it is. The primary goal of type introspection
with class instances is to reason about the structure/capabilities of the object
based on how it was created.

Consider this code which uses instanceof (see Chapter 5) for introspecting on
an object a1 to infer its capability:

function Foo() {

3

Foo.prototype.something = function(){

var al = new Foo();

if (al instanceof Foo) {
al.something();

Because Foo.prototype (not Foo !)isinthe [[Prototypel] chain (see Chapter
5) of a1,the instanceof operator (confusingly) pretends to tell us that a1 is an
instance of the Foo "class". With this knowledge, we then assume that a1 has
the capabilities described by the Foo "class".

Of course, there is no Foo class, only a plain old normal function Foo , which
happens to have a reference to an arbitrary object (Foo.prototype) that a1
happens to be delegation-linked to. By its syntax, instanceof pretends to be
inspecting the relationship between a1 and Foo , but it's actually telling us
whether a1 and (the arbitrary object referenced by) Foo.prototype are related.

The semantic confusion (and indirection) of instanceof syntax means that to use

instanceof -based introspection to ask if object a1 is related to the capabilities
object in question, you have to have a function that holds a reference to that
object -- you can't just directly ask if the two objects are related.

Recall the abstract Foo / Bar / bl example from earlier in this chapter, which
we'll abbreviate here:

function Foo() { }
Foo.prototype...

function Bar() { }
Bar.prototype = .create(Foo.prototype);

var bl = new Bar("b1");

For type introspection purposes on the entities in that example, using instanceof
and .prototype semantics, here are the various checks you might need to
perform:

Bar.prototype instanceof Foo;
.getPrototypeOf(Bar.prototype) === Foo.prototype;
Foo.prototype.isPrototypeOf(Bar.prototype);

bl instanceof Foo;
bl instanceof Bar;

.getPrototypeOf(bl) === Bar.prototype;
Foo.prototype.isPrototypeOf(bl);
Bar.prototype.isPrototypeOf(bl);

It's fair to say that some of that kinda sucks. For instance, intuitively (with classes)
you might want to be able to say something like Bar instanceof Foo (because it's
easy to mix up what "instance" means to think it includes "inheritance"), but that's
not a sensible comparison in JS. You have to do Bar.prototype instanceof Foo
instead.

Another common, but perhaps less robust, pattern for type introspection, which
many devs seem to prefer over instanceof , is called "duck typing". This term
comes from the adage, "if it looks like a duck, and it quacks like a duck, it must be
a duck".

Example:

if (al.something) {
al.something();
+

Rather than inspecting for a relationship between a1 and an object that holds
the delegatable something() function, we assume that the test for ai1.something
passing means al has the capability to call .something() (regardless of if it
found the method directly on a1 or delegated to some other object). In and of
itself, that assumption isn't so risky.

But "duck typing" is often extended to make other assumptions about the
object's capabilities besides what's being tested, which of course introduces
more risk (aka, brittle design) into the test.

One notable example of "duck typing" comes with ES6 Promises (which as an
earlier note explained are not being covered in this book).

For various reasons, there's a need to determine if any arbitrary object reference
is a Promise, but the way that test is done is to check if the object happens to
have a then() function present on it. In other words, if any object happens to
have a then() method, ES6 Promises will assume unconditionally that the object
is a "thenable" and therefore will expect it to behave conformantly to all standard
behaviors of Promises.

If you have any non-Promise object that happens for whatever reason to have a
then() method on it, you are strongly advised to keep it far away from the ES6
Promise mechanism to avoid broken assumptions.

That example clearly illustrates the perils of "duck typing". You should only use
such approaches sparingly and in controlled conditions.

Turning our attention once again back to OLOO-style code as presented here in
this chapter, type introspection turns out to be much cleaner. Let's recall (and
abbreviate) the Foo / Bar / bl OLOO example from earlier in the chapter:

var Foo = { 18
var Bar = .create(Foo);
Bar...

var bl = .create(Bar);

Using this OLOO approach, where all we have are plain objects that are related
via [[Prototypel]l delegation, here's the quite simplified type introspection we
might use:

Foo.isPrototypeOf(Bar);
.getPrototypeOf(Bar) === Foo;

Foo.isPrototypeOf(bl);
Bar.isPrototypeOf(bl);
.getPrototypeOf(bl) === Bar;

We're not using instanceof anymore, because it's confusingly pretending to
have something to do with classes. Now, we just ask the (informally stated)
question, "are you a prototype of me?" There's no more indirection necessary with
stuff like Foo.prototype or the painfully verbose

Foo.prototype.isPrototypeOf(..) .

| think it's fair to say these checks are significantly less complicated/confusing
than the previous set of introspection checks. Yet again, we see that OLOO is
simpler than (but with all the same power of) class-style coding in
JavaScript.

Review (TL;DR)

Classes and inheritance are a design pattern you can choose, or not choose, in
your software architecture. Most developers take for granted that classes are the
only (proper) way to organize code, but here we've seen there's another less-
commonly talked about pattern that's actually quite powerful: behavior
delegation.

Behavior delegation suggests objects as peers of each other, which delegate
amongst themselves, rather than parent and child class relationships.
JavaScript's [[Prototypel] mechanism is, by its very designed nature, a
behavior delegation mechanism. That means we can either choose to struggle to
implement class mechanics on top of JS (see Chapters 4 and 5), or we can just
embrace the natural state of [[Prototypel]l as a delegation mechanism.

When you design code with objects only, not only does it simplify the syntax you
use, but it can actually lead to simpler code architecture design.

OLOO (objects-linked-to-other-objects) is a code style which creates and relates
objects directly without the abstraction of classes. OLOO quite naturally
implements [[Prototypel] -based behavior delegation.

You Don't Know JS Yet: Objects &
Classes - 2nd Edition

Appendix A: ES6 class

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

If there's any take-away message from the second half of this book (Chapters 4-

6), it's that classes are an optional design pattern for code (not a necessary

given), and that furthermore they are often quite awkward to implement in a
[[Prototypel]l language like JavaScript.

This awkwardness is not just about syntax, although that's a big part of it.
Chapters 4 and 5 examined quite a bit of syntactic ugliness, from verbosity of

.prototype references cluttering the code, to explicit pseudo-polymorphism (see
Chapter 4) when you give methods the same name at different levels of the chain
and try to implement a polymorphic reference from a lower-level method to a
higher-level method. .constructor being wrongly interpreted as "was
constructed by" and yet being unreliable for that definition is yet another syntactic
ugly.

But the problems with class design are much deeper. Chapter 4 points out that
classes in traditional class-oriented languages actually produce a copy action
from parent to child to instance, whereas in [[Prototypel] , the action is not a
copy, but rather the opposite -- a delegation link.

When compared to the simplicity of OLOO-style code and behavior delegation
(see Chapter 6), which embrace [[Prototypell rather than hide from it, classes
stand out as a sore thumb in JS.

class

But we don't need to re-argue that case again. | re-mention those issues briefly
only so that you keep them fresh in your mind now that we turn our attention to
the ES6 class mechanism. We'll demonstrate here how it works, and look at
whether or not class does anything substantial to address any of those "class"
concerns.

Let's revisit the widget / Button example from Chapter 6:

class Widget {
constructor(width,height) {
this.width = width || H
this.height = height || H
this.$elem = g
+
render($where) {
if (this.$elem) {
this.$elem.css({
width: this.width + "px",
height: this.height + "px"
}).appendTo($where);

4

class Button extends Widget {

constructor(width,height, label) {

super(width, height);

this.label = label || "Default";

this.$elem = $("<button>").text(this.label);
+
render($where) {

super.render($where);

this.$elem.click(this.onClick.bind(this));
+
onClick(evt) {

.log("Button '" + this.label + "' clicked!");

+

Beyond this syntax looking nicer, what problems does ES6 solve?

1. There's no more (well, sorta, see below!) references to .prototype cluttering
the code.

2. Button is declared directly to "inherit from" (aka extends) Wwidget , instead
of needing to use Object.create(..) toreplace a .prototype object that's
linked, or having to set with .__proto__ or Object.setPrototypeOf(..) .

3. super(..) now gives us a very helpful relative polymorphism capability, so
that any method at one level of the chain can refer relatively one level up the
chain to a method of the same name. This includes a solution to the note
from Chapter 4 about the weirdness of constructors not belonging to their
class, and so being unrelated -- super() works inside constructors exactly
as you'd expect.

4. class literal syntax has no affordance for specifying properties (only
methods). This might seem limiting to some, but it's expected that the vast
majority of cases where a property (state) exists elsewhere but the end-chain

"instances", this is usually a mistake and surprising (as it's state that's
implicitly "shared" among all "instances"). So, one could say the class
syntax is protecting you from mistakes.

5. extends lets you extend even built-in object (sub)types, like Array or

RegExp , in a very natural way. Doing so without class .. extends has long

been an exceedingly complex and frustrating task, one that only the most
adept of framework authors have ever been able to accurately tackle. Now, it
will be rather trivial!

In all fairness, those are some substantial solutions to many of the most obvious
(syntactic) issues and surprises people have with classical prototype-style code.

class Gotchas

It's not all bubblegum and roses, though. There are still some deep and
profoundly troubling issues with using "classes" as a design pattern in JS.

Firstly, the class syntax may convince you a new "class" mechanism exists in
JS as of ES6. Not so. class is, mostly, just syntactic sugar on top of the existing
[[Prototypel] (delegation!) mechanism.

That means class is not actually copying definitions statically at declaration time
the way it does in traditional class-oriented languages. If you change/replace a
method (on purpose or by accident) on the parent "class", the child "class" and/or
instances will still be "affected”, in that they didn't get copies at declaration time,
they are all still using the live-delegation model based on [[Prototypell :

class C {
constructor() {
this.num = .random() ;
+
rand() {
.log("Random: " + this.num);
+
+

var cl = new C();
cl.rand();

C.prototype.rand = function() {

.log("Random: " + .round(this.num *));
+i
var c¢2 = new C();
c2.rand();
cl.rand();

This only seems like reasonable behavior if you already know about the
delegation nature of things, rather than expecting copies from "real classes". So
the question to ask yourself is, why are you choosing class syntax for
something fundamentally different from classes?

Doesn't the ES6 class syntax just make it harder to see and understand the
difference between traditional classes and delegated objects?

class syntax does not provide a way to declare class member properties (only
methods). So if you need to do that to track shared state among instances, then
you end up going back to the ugly .prototype syntax, like this:

class C {
constructor() {
// make sure to modify the shared state,
// not set a shadowed property on the
// instances!
C.prototype.count++;

// here, “this.count® works as expected
// via delegation
.log("Hello: " + this.count);

// add a property for shared state directly to
// prototype object
C.prototype.count = 0;

var ¢l = new C();
// Hello: 1

var c2 = new C();

// Hello: 2
cl.count === 2; // true
cl.count === c2.count; // true

The biggest problem here is that it betrays the class syntax by exposing
(leakage!) .prototype as an implementation detail.

But, we also still have the surprise gotcha that this.count++ would implicitly
create a separate shadowed .count property on both c1 and c2 objects,
rather than updating the shared state. class offers us no consolation from that
issue, except (presumably) to imply by lack of syntactic support that you shouldn't
be doing that at all.

Moreover, accidental shadowing is still a hazard:

class C {

constructor(id) {
// oops, gotcha, we're shadowing “id()" method
// with a property value on the instance
this.id = id;

+

id() {

.log("Id: " + this.id);
+

var ¢l = new C("cl1");
cl.id(); // TypeError —— “c1.id’ is now the string "c1"

There's also some very subtle nuanced issues with how super works. You might
assume that super would be bound in an analogous way to how this gets
bound (see Chapter 2), which is that super would always be bound to one level
higher than whatever the current method's position in the [[Prototypel] chain is.

However, for performance reasons (this binding is already expensive), super
is not bound dynamically. It's bound sort of "statically", as declaration time. No big
deal, right?

Ehh... maybe, maybe not. If you, like most JS devs, start assigning functions

around to different objects (which came from class definitions), in various

different ways, you probably won't be very aware that in all those cases, the
super mechanism under the covers is having to be re-bound each time.

And depending on what sorts of syntactic approaches you take to these
assignments, there may very well be cases where the super can't be properly
bound (at least, not where you suspect), so you may (at time of writing, TC39
discussion is ongoing on the topic) have to manually bind super with
toMethod(..) (kinda like you have to do bind(..) for this -- see Chapter 2).

You're used to being able to assign around methods to different objects to
automatically take advantage of the dynamism of this via the implicit binding
rule (see Chapter 2). But the same will likely not be true with methods that use

super .

Consider what super should do here (against b and E):

class P {
foo() { .log("P.foo"); }
¥

class C extends P {
foo() {
super();
+
+

var cl = new C();
cl.foo();

var D = {
foo: function() { .log("D.foo"); }
I

var E = {
foo: C.prototype.foo
+;

.setPrototype0f(E, D);

E.foo();

If you were thinking (quite reasonably!) that super would be bound dynamically
at call-time, you might expect that super() would automatically recognize that
E delegatesto D, so E.foo() using super() should callto D.foo() .

Not so. For performance pragmatism reasons, super is not late bound (aka,
dynamically bound) like this is. Instead it's derived at call-time from

[[HomeObject]]l. [[Prototypel]l , where [[HomeObject]] is statically bound at
creation time.

In this particular case, super() is still resolving to P.foo() , since the method's
[[HomeObject]] is still ¢ and C.[[Prototypel] is P .

There will probably be ways to manually address such gotchas. Using
toMethod(..) to bind/rebind a method's [[HomeObject]] (along with setting the
[[Prototypel] of that object!) appears to work in this scenario:

var D = {

foo: function() { .log("D.foo"); }
+
var E = .create(D);

E.foo = C.prototype.foo.toMethod(E, "foo");

E.foo();

Note: toMethod(..) clones the method, and takes homeObject as its first
parameter (which is why we pass E), and the second parameter (optionally) sets
a name for the new method (which keep at "foo").

It remains to be seen if there are other corner case gotchas that devs will run into
beyond this scenario. Regardless, you will have to be diligent and stay aware of
which places the engine automatically figures out super for you, and which
places you have to manually take care of it. Ugh!

Static > Dynamic?

But the biggest problem of all about ES6 class is that all these various gotchas
mean class sorta opts you into a syntax which seems to imply (like traditional
classes) that once you declare a class , it's a static definition of a (future
instantiated) thing. You completely lose sight of the fact that ¢ is an object, a
concrete thing, which you can directly interact with.

In traditional class-oriented languages, you never adjust the definition of a class
later, so the class design pattern doesn't suggest such capabilities. But one of
the most powerful parts of JS is that it is dynamic, and the definition of any
object is (unless you make it immutable) a fluid and mutable thing.

class seems to imply you shouldn't do such things, by forcing you into the uglier
.prototype syntax to do so, or forcing you to think about super gotchas, etc. It
also offers very little support for any of the pitfalls that this dynamism can bring.

In other words, it's as if class is telling you: "dynamic is too hard, so it's probably
not a good idea. Here's a static-looking syntax, so code your stuff statically."

What a sad commentary on JavaScript: dynamic is too hard, let's pretend to be
(but not actually be!) static.

These are the reasons why ES6 class is masquerading as a nice solution to
syntactic headaches, but it's actually muddying the waters further and making
things worse for JS and for clear and concise understanding.

Note: If you use the .bind(..) utility to make a hard-bound function (see
Chapter 2), the function created is not subclassable with ES6 extend like normal
functions are.

Review (TL;DR)

class does a very good job of pretending to fix the problems with the
class/inheritance design pattern in JS. But it actually does the opposite: it hides
many of the problems, and introduces other subtle but dangerous ones.

class contributes to the ongoing confusion of "class" in JavaScript which has
plagued the language for nearly two decades. In some respects, it asks more
questions than it answers, and it feels in totality like a very unnatural fit on top of
the elegant simplicity of the [[Prototypel]l mechanism.

Bottom line: if ES6 class makes it harder to robustly leverage [[Prototypel] ,
and hides the most important nature of the JS object mechanism -- the live
delegation links between objects -- shouldn't we see class as creating more
troubles than it solves, and just relegate it to an anti-pattern?

| can't really answer that question for you. But | hope this book has fully explored
the issue at a deeper level than you've ever gone before, and has given you the
information you need to answer it yourself.

You Don't Know JS Yet: Types &
Grammar - 2nd Edition

NOTE:

Work in progress

Table of Contents

o Foreword (by TBA)

e Preface

e Chapter 1: Types

e Chapter 2: Values

e Chapter 3: Natives

e Chapter 4: Coercion

e Chapter 5: Grammar

e Appendix A: Mixed Environment JavaScript

file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/toc3.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/foreword3.md
file:///private/var/folders/mm/jt83wktj5wz37k7lblglkd1r0000gn/C/calibre_4.10.1_tmp_zDqxzP/vIQ3My_pdf_out/preface.md

You Don't Know JS Yet: Types &
Grammar - 2nd Edition

Chapter 1: Types

NOTE:

Work in progress

NOTE:

Everything below here is previous text from 1st edition, and is only here for
reference while 2nd edition work is underway. Please ignore this stuff.

Most developers would say that a dynamic language (like JS) does not have
types. Let's see what the ES5.1 specification (http://www.ecma-
international.org/ecma-262/5.1/) has to say on the topic:

Algorithms within this specification manipulate values each of which has an
associated type. The possible value types are exactly those defined in this
clause. Types are further sub classified into ECMAScript language types
and specification types.

An ECMAScript language type corresponds to values that are directly
manipulated by an ECMAScript programmer using the ECMAScript
language. The ECMAScript language types are Undefined, Null, Boolean,
String, Number, and Object.

Now, if you're a fan of strongly typed (statically typed) languages, you may object
to this usage of the word "type." In those languages, "type" means a whole lot
more than it does here in JS.

Some people say JS shouldn't claim to have "types," and they should instead be
called "tags" or perhaps "subtypes".

http://www.ecma-international.org/ecma-262/5.1/

Bah! We're going to use this rough definition (the same one that seems to drive
the wording of the spec): a type is an intrinsic, built-in set of characteristics that
uniquely identifies the behavior of a particular value and distinguishes it from
other values, both to the engine and to the developer.

In other words, if both the engine and the developer treat value 42 (the number)
differently than they treat value "42" (the string), then those two values have
different fypes -- number and string , respectively. When you use 42 , you are
intending to do something numeric, like math. But when you use "42" , you are
intending to do something string'ish, like outputting to the page, etc. These two
values have different types.

That's by no means a perfect definition. But it's good enough for this discussion.
And it's consistent with how JS describes itself.

A Type By Any Other Name...

Beyond academic definition disagreements, why does it matter if JavaScript has
types or not?

Having a proper understanding of each fype and its intrinsic behavior is absolutely
essential to understanding how to properly and accurately convert values to
different types (see Coercion, Chapter 4). Nearly every JS program ever written
will need to handle value coercion in some shape or form, so it's important you do
so responsibly and with confidence.

If you have the number value 42 , but you want to treat it like a string , such as
pulling out the "2" as a character in position 1 , you obviously must first convert
(coerce) the value from number to string .

That seems simple enough.

But there are many different ways that such coercion can happen. Some of these
ways are explicit, easy to reason about, and reliable. But if you're not careful,
coercion can happen in very strange and surprising ways.

Coercion confusion is perhaps one of the most profound frustrations for
JavaScript developers. It has often been criticized as being so dangerous as to be
considered a flaw in the design of the language, to be shunned and avoided.

Armed with a full understanding of JavaScript types, we're aiming to illustrate why
coercion's bad reputation is largely overhyped and somewhat undeserved -- to flip
your perspective, to seeing coercion's power and usefulness. But first, we have to
get a much better grip on values and types.

Built-in Types

JavaScript defines seven built-in types:

e null

e undefined

e boolean

e number
e string
e object

e symbol -- added in ES6!
Note: All of these types except object are called "primitives".

The typeof operator inspects the type of the given value, and always returns
one of seven string values -- surprisingly, there's not an exact 1-to-1 match with
the seven built-in types we just listed.

typeof === "undefined";
typeof === "boolean";
typeof === "number";
typeof "42" === "string";
typeof { life: } === "object";
typeof () === "symbol";

These six listed types have values of the corresponding type and return a string
value of the same name, as shown. Symbol is a new data type as of ES6, and
will be covered in Chapter 3.

As you may have noticed, | excluded null from the above listing. It's special --

special in the sense that it's buggy when combined with the typeof operator:

typeof === "object";

It would have been nice (and correct!) if it returned "null" , but this original bug
in JS has persisted for nearly two decades, and will likely never be fixed because
there's too much existing web content that relies on its buggy behavior that
"fixing" the bug would create more "bugs" and break a lot of web software.

If you want to test fora null value using its type, you need a compound
condition:

var a = ;

('a && typeof a === "object");
null is the only primitive value that is "falsy" (aka false-like; see Chapter 4) but
that also returns "object" from the typeof check.

So what's the seventh string value that typeof can return?

typeof function a(){ === "function";

It's easy to think that function would be a top-level built-in type in JS, especially
given this behavior of the typeof operator. However, if you read the spec, you'll
see it's actually a "subtype" of object. Specifically, a function is referred to as a

"callable object" -- an object that has an internal [[calll] property that allows it
to be invoked.

The fact that functions are actually objects is quite useful. Most importantly, they
can have properties. For example:

function a(b,c) {

S

The function object has a 1length property set to the number of formal
parameters it is declared with.

a. length;

Since you declared the function with two formal named parameters (b and c),
the "length of the function" is 2 .

What about arrays? They're native to JS, so are they a special type?

typeof [1,2,3] === "ob